scholarly journals Simulating Globular Clusters in Dark Matter Subhalos

2022 ◽  
Vol 924 (2) ◽  
pp. 77
Author(s):  
Raymond G. Carlberg ◽  
Laura C. Keating

Abstract A cosmological zoom-in simulation that develops into a Milky Way-like halo begins at redshift 7. The initial dark matter distribution is seeded with dense star clusters of median mass 5 × 105 M ⊙, placed in the largest subhalos present, which have a median peak circular velocity of 25 km s−1. Three simulations are initialized using the same dark matter distribution with the star clusters starting on approximately circular orbits having initial median radii 6.8, 0.14 kpc, and, at the exact center of the subhalos. The simulations are evolved to the current epoch at which time the median galactic orbital radii of the three sets of clusters are 30, 5, and 16 kpc, with the clusters losing about 2%, 50%, and 15% of their mass, respectively. Clusters beginning at small orbital radii have so much tidal forcing that they are often not in equilibrium. Clusters that start at larger subhalo radii have a velocity dispersion that declines smoothly to ≃20% of the central value at ≃20 half-mass radii. The clusters that begin in the subhalo centers can show a rise in velocity dispersion beyond 3–5 half-mass radii. That is, the clusters that form without local dark matter always have stellar-mass-dominated kinematics at all radii, whereas about 25% of the clusters that begin in subhalo centers have remnant local dark matter.

2016 ◽  
Vol 94 (12) ◽  
Author(s):  
V. Gammaldi ◽  
V. Avila-Reese ◽  
O. Valenzuela ◽  
A. X. Gonzalez-Morales

2016 ◽  
Vol 458 (2) ◽  
pp. 1559-1580 ◽  
Author(s):  
Qirong Zhu ◽  
Federico Marinacci ◽  
Moupiya Maji ◽  
Yuexing Li ◽  
Volker Springel ◽  
...  

2019 ◽  
Vol 2019 (09) ◽  
pp. 046-046 ◽  
Author(s):  
E.V. Karukes ◽  
M. Benito ◽  
F. Iocco ◽  
R. Trotta ◽  
A. Geringer-Sameth

2011 ◽  
Vol 2011 (11) ◽  
pp. 029-029 ◽  
Author(s):  
Fabio Iocco ◽  
Miguel Pato ◽  
Gianfranco Bertone ◽  
Philippe Jetzer

2015 ◽  
Vol 802 (1) ◽  
pp. 46 ◽  
Author(s):  
M. James Jee ◽  
Andra Stroe ◽  
William Dawson ◽  
David Wittman ◽  
Henk Hoekstra ◽  
...  

2020 ◽  
Vol 498 (1) ◽  
pp. 1080-1092
Author(s):  
Rain Kipper ◽  
María Benito ◽  
Peeter Tenjes ◽  
Elmo Tempel ◽  
Roberto de Propris

ABSTRACT A galaxy moving through a background of dark matter particles induces an overdensity of these particles or a wake behind it. The back reaction of this wake on the galaxy is a force field that can be decomposed into an effective deceleration (called dynamical friction) and a tidal field. In this paper, we determine the tidal forces, thus generated on the galaxy, and the resulting observables, which are shown to be warps, lopsidedness, and/or kinematic-photometric position angle misalignments. We estimate the magnitude of the tidal-like effects needed to reproduce the observed warp and lopsidedness on the isolated galaxy IC 2487. Within a realistic range of dark matter distribution properties, the observed, warped, and lopsided kinematical properties of IC 2487 are possible to reproduce (the background medium of dark matter particles has a velocity dispersion of $\lesssim 80\, {\rm km\, s^{-1}}$ and the density $10^4{\!-\!}10^5\, {\rm M_\odot \, kpc^{-3}}$, more likely at the lower end). We conclude that the proposed mechanism can generate warps, lopsidedness, and misalignments observed in isolated galaxies or galaxies in loose groups. The method can be used also to constrain dark matter spatial and velocity distribution properties.


2017 ◽  
Vol 13 (S334) ◽  
pp. 73-81
Author(s):  
Ortwin Gerhard

AbstractThe Milky Way is a barred galaxy whose central bulge has a box/peanut shape and consists of multiple stellar populations with different orbit distributions. This review describes dynamical and chemo-dynamical equilibrium models for the Bulge, Bar, and inner Disk based on recent survey data. Some of the highlighted results include (i) stellar mass determinations for the different Galactic components, (ii) the need for a core in the dark matter distribution, (iii) a revised pattern speed putting corotation at ~6 kpc, (iv) the strongly barred distribution of the metal-rich stars, and (v) the radially varying dynamics of the metal-poor stars which is that of a thick disk-bar outside ~1 kpc, but changes into an inner centrally concentrated component with several possible origins. On-going and future surveys will refine this picture, making the Milky Way a unique case for studying how similar galaxies form and evolve.


2019 ◽  
Vol 14 (S353) ◽  
pp. 123-127 ◽  
Author(s):  
Gurtina Besla ◽  
Nicolás Garavito-Camargo

AbstractRecent advancements in astrometry and in cosmological models of dark matter halo growth have significantly changed our understanding of the dynamics of the Local Group. The most dramatic changes owe to a new picture of the structure and dynamics of the Milky Way’s most massive satellite galaxy, the Large Magellanic Cloud (LMC), which is most likely on its first passage about the Milky Way and ten times larger in mass than previously assumed. The LMC’s orbit through the Milky Way’s dark matter and stellar halo will leave characteristic signatures in both density and kinematics. Furthermore, the gravitational perturbations produced by both direct tidal forcing from the LMC and the response of the halo to its passage will together cause significant perturbations to the orbits of tracers of the Milky Way’s dark matter distribution. We advocate for the use of basis field expansion methods to fully capture and quantify these effects.


Sign in / Sign up

Export Citation Format

Share Document