central bulge
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 1)

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5111
Author(s):  
Huabo Xu ◽  
Huihui Song ◽  
Rui Hou

To improve the efficiency of the wireless power transfer (WPT) system without increasing the system size, a central bulge ferrite core with a novel configuration is proposed. The mutual inductance between magnetic coupling structures is able to increase obviously, which is approved by eigenfunction expansion method. In this paper, the mathematical models of the planar core and the central bulge core are established, respectively, as two types of the mutual inductance are calculated in same condition. The structure parameters of the central bulge ferrite core are further optimized by Maxwell magnetic field simulation. Experiments are conducted to compare the WPT efficiency of two types of ferrite cores in improving the efficiency of WPT system, in which the influence of transmission distance, lateral misalignment, and load variation are taken into account. The results show that central bulge ferrite core has better performance in WPT efficiency than the planar one, even in the case of long power transfer distance and lateral misalignment.


Science ◽  
2021 ◽  
Vol 371 (6530) ◽  
pp. 713-716 ◽  
Author(s):  
Federico Lelli ◽  
Enrico M. Di Teodoro ◽  
Filippo Fraternali ◽  
Allison W. S. Man ◽  
Zhi-Yu Zhang ◽  
...  

Cosmological models predict that galaxies forming in the early Universe experience a chaotic phase of gas accretion and star formation, followed by gas ejection due to feedback processes. Galaxy bulges may assemble later via mergers or internal evolution. Here we present submillimeter observations (with spatial resolution of 700 parsecs) of ALESS 073.1, a starburst galaxy at redshift z≃5 when the Universe was 1.2 billion years old. This galaxy’s cold gas forms a regularly rotating disk with negligible noncircular motions. The galaxy rotation curve requires the presence of a central bulge in addition to a star-forming disk. We conclude that massive bulges and regularly rotating disks can form more rapidly in the early Universe than predicted by models of galaxy formation.


2021 ◽  
Vol 30 (1) ◽  
pp. 1-11
Author(s):  
Golden Gadzirayi Nyambuya

Abstract We here-in demonstrate that the proposed hitherto unknown gravitomagnetic dark-force that hypothetically explains the Flat Rotation Curves of Spiral Galaxies — this same force, explains very well, the logarithmic and as-well, the barred spiral shapes of spiral galaxies. That is, much in line with Edward Arthur Milne (1896-1950)’s 1946 ideas — albeit, on a radically and asymptotically different philosophical train of thought, the galactic disk is here assumed to be in a state of free-fall around the central bulge with the hypothetical gravitomagnetic dark-force being the dominant force determining all gravity-related dynamics of the disk, thus leading to logarithmic and barred spiral orbits, hence the shape of spiral galaxies.


2020 ◽  
Vol 497 (1) ◽  
pp. 44-51
Author(s):  
Sudhanshu Barway ◽  
Y D Mayya ◽  
Aitor Robleto-Orús

ABSTRACT We report the discovery of a bar, a pseudo-bulge, and unresolved point source in the archetype collisional ring galaxy Cartwheel using careful morphological analysis of a near-infrared (NIR) Ks-band image of excellent quality (seeing = 0.42″) at the ESO archive. The bar is oval-shaped with a semi-major axis length of 3.23″ (∼2.09 kpc), with almost a flat light distribution along it. The bulge is almost round (ellipticity = 0.21) with an effective radius of 1.62″ (∼1.05 kpc) and a Sersic index of 0.99, parameters typical of pseudo-bulges in late-type galaxies. The newly discovered bar is not recognizable as such in the optical images even with more than a factor of 2 higher spatial resolution of the Hubble Space Telescope, due to a combination of its red colour and the presence of dusty features. The observed bar and pseudo-bulge most likely belonged to the pre-collisional progenitor of the Cartwheel. The discovery of a bar in an archetype collisional ring galaxy Cartwheel is the first observational evidence to confirm the prediction that bars can survive a drop-through collision along with the morphological structures like a central bulge (pseudo).


Author(s):  
James W Nightingale ◽  
Richard J Massey ◽  
David R Harvey ◽  
Andrew P Cooper ◽  
Amy Etherington ◽  
...  

Abstract We investigate how strong gravitational lensing can test contemporary models of massive elliptical (ME) galaxy formation, by combining a traditional decomposition of their visible stellar distribution with a lensing analysis of their mass distribution. As a proof of concept, we study a sample of three ME lenses, observing that all are composed of two distinct baryonic structures, a ‘red’ central bulge surrounded by an extended envelope of stellar material. Whilst these two components look photometrically similar, their distinct lensing effects permit a clean decomposition of their mass structure. This allows us to infer two key pieces of information about each lens galaxy: (i) the stellar mass distribution (without invoking stellar populations models) and (ii) the inner dark matter halo mass. We argue that these two measurements are crucial to testing models of ME formation, as the stellar mass profile provides a diagnostic of baryonic accretion and feedback whilst the dark matter mass places each galaxy in the context of LCDM large scale structure formation. We also detect large rotational offsets between the two stellar components and a lopsidedness in their outer mass distributions, which hold further information on the evolution of each ME. Finally, we discuss how this approach can be extended to galaxies of all Hubble types and what implication our results have for studies of strong gravitational lensing.


2017 ◽  
Vol 13 (S334) ◽  
pp. 73-81
Author(s):  
Ortwin Gerhard

AbstractThe Milky Way is a barred galaxy whose central bulge has a box/peanut shape and consists of multiple stellar populations with different orbit distributions. This review describes dynamical and chemo-dynamical equilibrium models for the Bulge, Bar, and inner Disk based on recent survey data. Some of the highlighted results include (i) stellar mass determinations for the different Galactic components, (ii) the need for a core in the dark matter distribution, (iii) a revised pattern speed putting corotation at ~6 kpc, (iv) the strongly barred distribution of the metal-rich stars, and (v) the radially varying dynamics of the metal-poor stars which is that of a thick disk-bar outside ~1 kpc, but changes into an inner centrally concentrated component with several possible origins. On-going and future surveys will refine this picture, making the Milky Way a unique case for studying how similar galaxies form and evolve.


2007 ◽  
Vol 3 (S245) ◽  
pp. 297-300
Author(s):  
H. Dottori ◽  
R. J. Diaz ◽  
M. P. Agüero ◽  
D. Mast ◽  
I. Rodrigues

AbstractThe luminosity profile of M 83 bulge can be traced by a de Vaucouleurs' law between ≈ 200 pc and ≈ 800 pc. The inner part can be fitted by a n = −1/2 Sérsic profile. Also the IR (J − K) color shows difference between the periphery and the central part of the bulge, both properties indicating the presence of a pseudobulge. Previous Gemini-S 3-D, Paβ spectroscopy of the central ≈ 5″×13″ revealed spider like diagrams indicating disk like motion around three extended masses identified respectively with the optical nucleus (ON), with the center of the bulge isophotes, similar to the CO kinematical center (KC), and with a condensation hidden at optical wavelengths (HN), coincident with the largest lobe in 10 μm emission, most probably a cannibalized satellite. Numerical simulations show that they suffer strong evaporation and they would merge engulfing also the star forming arc in few hundred Myr, increasing the mass at the kinematical center by a factor o five or more. Upper mass limit of putative Black Holes associated to ON, KC and HN are a few ten thousand to a million solar masses. GMOS+Gemini imaging and spectroscopy of a chain of radio sources has yield no optical high redshift counterparts. This radio sources are aligned with ON, neither associated to SN nor to HII regions and might point to an older similar phenomenon, which left behind a kick-off spur.


2006 ◽  
Vol 129 (2) ◽  
pp. 233-241 ◽  
Author(s):  
Adam R. Loukus ◽  
Ghatu Subhash ◽  
Mehdi Imaninejad

Analysis of process optimization for hydroforming of central-bulge and T-branch from AA6063 tubes is conducted for W-temper and T4 heat-treated conditions. Systematic characterization of AA6063 mechanical properties as a function of aging time was also conducted. It was found that hydroforming in the W temper facilitates forming of a bigger T branch (due to available greater ductility), but limits the strength (hardness) of the final component compared to that formed in the T4 condition. By optimizing the material heat-treatment conditions and the process parameters during hydroforming, strains well in excess of the traditional forming limits can be achieved in the finished components. The relevant microstructural kinetics during hydroforming of the above two geometries in the two heat treated conditions and the associated strengthening mechanisms in aluminum alloys are discussed.


2005 ◽  
Vol 386 (12) ◽  
pp. 1273-1277 ◽  
Author(s):  
Dagmar K. Willkomm ◽  
Roland K. Hartmann

AbstractThe bacterial riboregulator 6S RNA was one of the first non-coding RNAs to be discovered in the late 1960s, but its cellular role remained enigmatic until the year 2000. 6S RNA, only recognized to be ubiquitous among bacteria in 2005, binds to RNA polymerase in a σ factor-dependent manner to repress transcription from a subgroup of promoters. The common feature of a double-stranded rod with a central bulge has led to the proposal that 6S RNA may mimic an open promoter complex.


Sign in / Sign up

Export Citation Format

Share Document