scholarly journals MC2: CONSTRAINING THE DARK MATTER DISTRIBUTION OF THE VIOLENT MERGING GALAXY CLUSTER CIZA J2242.8+5301 BY PIERCING THROUGH THE MILKY WAY

2015 ◽  
Vol 802 (1) ◽  
pp. 46 ◽  
Author(s):  
M. James Jee ◽  
Andra Stroe ◽  
William Dawson ◽  
David Wittman ◽  
Henk Hoekstra ◽  
...  

2016 ◽  
Vol 94 (12) ◽  
Author(s):  
V. Gammaldi ◽  
V. Avila-Reese ◽  
O. Valenzuela ◽  
A. X. Gonzalez-Morales


2011 ◽  
Vol 20 (2) ◽  
Author(s):  
T. Sepp ◽  
E. Tempel ◽  
M. Gramann ◽  
P. Nurmi ◽  
M. Haupt

AbstractThe SDSS galaxy catalog is one of the best databases for galaxy distribution studies. The SDSS DR8 data is used to construct the galaxy cluster catalog. We construct the clusters from the calculated luminosity density field and identify denser regions. Around these peak regions we construct galaxy clusters. Another interesting question in cosmology is how observable galaxy structures are connected to underlying dark matter distribution. To study this we compare the SDSS DR7 galaxy group catalog with galaxy groups obtained from the semi-analytical Millennium N-Body simulation. Specifically, we compare the group richness, virial radius, maximum separation and velocity dispersion distributions and find a relatively good agreement between the mock catalog and observations. This strongly supports the idea that the dark matter distribution and galaxies in the semi-analytical models and observations are very closely linked.



2016 ◽  
Vol 458 (2) ◽  
pp. 1559-1580 ◽  
Author(s):  
Qirong Zhu ◽  
Federico Marinacci ◽  
Moupiya Maji ◽  
Yuexing Li ◽  
Volker Springel ◽  
...  




2020 ◽  
Vol 639 ◽  
pp. A125
Author(s):  
Alberto Manjón-García ◽  
Jose M. Diego ◽  
Diego Herranz ◽  
Daniel Lam

We performed a free-form strong lensing analysis of the galaxy cluster MACS J1206.2−0847 in order to estimate and constrain its inner dark matter distribution. The free-form method estimates the cluster total mass distribution without using any prior information about the underlying mass. We used 97 multiple lensed images belonging to 27 background sources and derived several models, which are consistent with the data. Among these models, we focus on those that better reproduce the radial images that are closest to the centre of the cluster. These radial images are the best probes of the dark matter distribution in the central region and constrain the mass distribution down to distances ∼7 kpc from the centre. We find that the morphology of the innermost radial arcs is due to the elongated morphology of the dark matter halo. We estimate the stellar mass contribution of the brightest cluster galaxy and subtracted it from the total mass in order to quantify the amount of dark matter in the central region. We fitted the derived dark matter density profile with a gNFW, which is characterised by rs = 167 kpc, ρs = 6.7 × 106 M⊙ kpc−3, and γgNFW = 0.70. These results are consistent with a dynamically relaxed cluster. This inner slope is smaller than the cannonical γ = 1 predicted by standard CDM models. This slope does not favour self-interacting models for which a shallower slope would be expected.



2019 ◽  
Vol 2019 (09) ◽  
pp. 046-046 ◽  
Author(s):  
E.V. Karukes ◽  
M. Benito ◽  
F. Iocco ◽  
R. Trotta ◽  
A. Geringer-Sameth


2011 ◽  
Vol 2011 (11) ◽  
pp. 029-029 ◽  
Author(s):  
Fabio Iocco ◽  
Miguel Pato ◽  
Gianfranco Bertone ◽  
Philippe Jetzer


2015 ◽  
Vol 2015 (12) ◽  
pp. 001-001 ◽  
Author(s):  
Miguel Pato ◽  
Fabio Iocco ◽  
Gianfranco Bertone


2017 ◽  
Vol 13 (S334) ◽  
pp. 73-81
Author(s):  
Ortwin Gerhard

AbstractThe Milky Way is a barred galaxy whose central bulge has a box/peanut shape and consists of multiple stellar populations with different orbit distributions. This review describes dynamical and chemo-dynamical equilibrium models for the Bulge, Bar, and inner Disk based on recent survey data. Some of the highlighted results include (i) stellar mass determinations for the different Galactic components, (ii) the need for a core in the dark matter distribution, (iii) a revised pattern speed putting corotation at ~6 kpc, (iv) the strongly barred distribution of the metal-rich stars, and (v) the radially varying dynamics of the metal-poor stars which is that of a thick disk-bar outside ~1 kpc, but changes into an inner centrally concentrated component with several possible origins. On-going and future surveys will refine this picture, making the Milky Way a unique case for studying how similar galaxies form and evolve.



2020 ◽  
Vol 496 (3) ◽  
pp. 4032-4050 ◽  
Author(s):  
Sut-Ieng Tam ◽  
Mathilde Jauzac ◽  
Richard Massey ◽  
David Harvey ◽  
Dominique Eckert ◽  
...  

ABSTRACT Using the largest mosaic of Hubble Space Telescope images around a galaxy cluster, we map the distribution of dark matter throughout an ∼6 × 6 Mpc2 area centred on the cluster MS 0451−03 (z = 0.54, $M_{200}=1.65\times 10^{15}\, {\rm M}_{\odot }$). Our joint strong- and weak-lensing analysis shows three possible filaments extending from the cluster, encompassing six group-scale substructures. The dark matter distribution in the cluster core is elongated, consists of two distinct components, and is characterized by a concentration parameter of c200 = 3.79 ± 0.36. By contrast, XMM–Newton observations show the gas distribution to be more spherical, with excess entropy near the core, and a lower concentration of $c_{200}=2.35^{+0.89}_{-0.70}$ (assuming hydrostatic equilibrium). Such a configuration is predicted in simulations of major mergers 2–7 Gyr after the first core passage, when the two dark matter haloes approach second turnaround, and before their gas has relaxed. This post-merger scenario finds further support in optical spectroscopy of the cluster’s member galaxies, which shows that star formation was abruptly quenched 5 Gyr ago. MS 0451−03 will be an ideal target for future studies of the growth of structure along filaments, star formation processes after a major merger, and the late-stage evolution of cluster collisions.



Sign in / Sign up

Export Citation Format

Share Document