stellar halo
Recently Published Documents


TOTAL DOCUMENTS

274
(FIVE YEARS 76)

H-INDEX

47
(FIVE YEARS 12)

Author(s):  
Ling Zhu ◽  
Annalisa Pillepich ◽  
Glenn van de Ven ◽  
Ryan Leaman ◽  
Lars Hernquist ◽  
...  
Keyword(s):  

2022 ◽  
Vol 924 (1) ◽  
pp. 23
Author(s):  
Wenbo Wu ◽  
Gang Zhao ◽  
Xiang-Xiang Xue ◽  
Sarah A. Bird ◽  
Chengqun Yang

Abstract We explore the contribution of the Gaia Sausage to the stellar halo of the Milky Way by making use of a Gaussian mixture model (GMM) and applying it to halo star samples of Large Sky Area Multi-Object Fiber Spectroscopic Telescope K giants, Sloan Extension for Galactic Understanding and Exploration K giants, and Sloan Digital Sky Survey blue horizontal branch stars. The GMM divides the stellar halo into two parts, of which one represents a more metal-rich and highly radially biased component associated with an ancient, head-on collision referred to as the Gaia Sausage, and the other one is a more metal-poor and isotropic halo. A symmetric bimodal Gaussian is used to describe the distribution of spherical velocity of the Gaia Sausage, and we find that the mean absolute radial velocity of the two lobes decreases with the Galactocentric radius. We find that the Gaia Sausage contributes about 41%–74% of the inner (Galactocentric radius r gc < 30 kpc) stellar halo. The fraction of stars of the Gaia Sausage starts to decline beyond r gc ∼ 25–30 kpc, and the outer halo is found to be significantly less influenced by the Gaia Sausage than the inner halo. After the removal of halo substructures found by integrals of motion, the contribution of the Gaia Sausage falls slightly within r gc ∼ 25 kpc but is still as high as 30%–63%. Finally, we select several possible Sausage-related substructures consisting of stars on highly eccentric orbits. The GMM/Sausage component agrees well with the selected substructure stars in their chemodynamical properties, which increases our confidence in the reliability of the GMM fits.


Author(s):  
Geoff G Murphy ◽  
Robert M Yates ◽  
Shazrene S Mohamed

Abstract We present an analysis of the formation and chemical evolution of stellar haloes around (a) Milky Way Analogue (MWA) galaxies and (b) galaxy clusters in the L-Galaxies 2020 semi-analytic model of galaxy evolution. Observed stellar halo properties are better reproduced when assuming a gradual stripping model for the removal of cold gas and stars from satellites, compared to an instantaneous stripping model. The slope of the stellar mass – metallicity relation for MWA stellar haloes is in good agreement with that observed in the local Universe. This extends the good agreement between L-Galaxies 2020 and metallicity observations from the gas and stars inside galaxies to those outside. Halo stars contribute on average only ∼0.1 per cent of the total circumgalactic medium (CGM) enrichment by z = 0 in MWAs, ejecting predominantly carbon produced by AGB stars. Around a quarter of MWAs have a single ‘significant progenitor’ with a mean mass of ∼ 2.3 × 109M⊙, similar to that measured for Gaia Enceladus. For galaxy clusters, L-Galaxies 2020 shows good correspondence with observations of stellar halo mass fractions, but slightly over-predicts stellar masses. Assuming a Navarro-Frenk-White profile for the stellar halo mass distribution provides the best agreement. On average, the intracluster stellar component (ICS) is responsible for 5.4 per cent of the total intracluster medium (ICM) iron enrichment, exceeding the contribution from the brightest cluster galaxy (BCG) by z = 0. We find that considering gradual stripping of satellites and realistic radial profiles is crucial for accurately modelling stellar halo formation on all scales in semi-analytic models.


2021 ◽  
Vol 923 (1) ◽  
pp. 92
Author(s):  
Rohan P. Naidu ◽  
Charlie Conroy ◽  
Ana Bonaca ◽  
Dennis Zaritsky ◽  
Rainer Weinberger ◽  
...  

Abstract Several lines of evidence suggest that the Milky Way underwent a major merger at z ∼ 2 with the Gaia-Sausage-Enceladus (GSE) galaxy. Here we use H3 Survey data to argue that GSE entered the Galaxy on a retrograde orbit based on a population of highly retrograde stars with chemistry similar to the largely radial GSE debris. We present the first tailored N-body simulations of the merger. From a grid of ≈500 simulations we find that a GSE with M ⋆ = 5 × 108 M ⊙, M DM = 2 × 1011 M ⊙ best matches the H3 data. This simulation shows that the retrograde stars are stripped from GSE’s outer disk early in the merger. Despite being selected purely on angular momenta and radial distributions, this simulation reproduces and explains the following phenomena: (i) the triaxial shape of the inner halo, whose major axis is at ≈35° to the plane and connects GSE’s apocenters; (ii) the Hercules-Aquila Cloud and the Virgo Overdensity, which arise due to apocenter pileup; and (iii) the 2 Gyr lag between the quenching of GSE and the truncation of the age distribution of the in situ halo, which tracks the lag between the first and final GSE pericenters. We make the following predictions: (i) the inner halo has a “double-break” density profile with breaks at both ≈15–18 kpc and 30 kpc, coincident with the GSE apocenters; and (ii) the outer halo has retrograde streams awaiting discovery at >30 kpc that contain ≈10% of GSE’s stars. The retrograde (radial) GSE debris originates from its outer (inner) disk—exploiting this trend, we reconstruct the stellar metallicity gradient of GSE (−0.04 ± 0.01 dex r 50 − 1 ). These simulations imply that GSE delivered ≈20% of the Milky Way’s present-day dark matter and ≈50% of its stellar halo.


Author(s):  
M. Rejkuba ◽  
W. E. Harris ◽  
L. Greggio ◽  
D. Crnojevic ◽  
G. L. H. Harris

2021 ◽  
Vol 915 (1) ◽  
pp. 9
Author(s):  
Haifan Zhu ◽  
Cuihua Du ◽  
Yepeng Yan ◽  
Jianrong Shi ◽  
Jun Ma ◽  
...  

2021 ◽  
Vol 910 (2) ◽  
pp. 92
Author(s):  
Guillaume F. Thomas ◽  
Nicolas F. Martin ◽  
Azadeh Fattahi ◽  
Rodrigo A. Ibata ◽  
John Helly ◽  
...  

2021 ◽  
Author(s):  
Ling Zhu ◽  
Glenn van de Ven ◽  
Ryan Leaman ◽  
Annalisa Pillepich ◽  
Enrica Iodice ◽  
...  

Abstract Driven by gravity, galaxies are expected to continuously grow through the merging of smaller systems. To derive their past merger history is challenging, as the accreted stars disperse quickly; yet, it is a needed step to test the theory of hierarchical evolution. The merger histories of the most massive Local Group spirals, the Milky Way and M31, have been re- cently uncovered by using the motion and chemistry of their individual stars. On the other hand, the details of the merger history of galaxies at larger distance have so far remained hidden. Here we report the discovery of an ancient, massive merger event in the lenticu- lar galaxy NGC 1380 in the Fornax cluster. By applying a recently developed population-orbital superposition model (Zhu at al 2020) to NGC 1380’s surface brightness as well as stellar kinematic, age, and metallicity maps from VLT/MUSE IFU data (Sarzi et al 2018), we obtain the stellar orbits, age and metallicity distributions of this galaxy. The highly radial orbits which make up an inner stellar halo are ∼ 13 Gyr old with metallicity Z/Z⊙ ∼ 1.2 and comprise a stellar mass of M∗,halo(r<2Re)∼3.4×10^10 M⊙. By comparing to analogues from the cosmological galaxy simulation TNG50 (Pillepich 2019), we find that the formation of the inner stellar halo of NGC 1380 requires a merger with a massive satellite galaxy with stellar mass of ∼ 3 × 10^10 M⊙ that occurred roughly ∼ 10 Gyr ago. Moreover, we infer the total accreted stellar mass of NGC 1380 to be ∼ 6 × 10^10 M⊙. The massive merger in NGC 1380 is the first major merger event found in a normal phase-mixed galaxy beyond the Local Volume, and it is the oldest and most massive one identified in nearby galaxies so far. Our chemo-dynamical method, when applied to extended deep IFU data and in combination with cosmological galaxy simulations, can quantitatively unravel the merger history of a large number of nearby galaxies.


Sign in / Sign up

Export Citation Format

Share Document