scholarly journals Search for Hα Emitters at z ∼ 7.8: A Constraint on the Hα-based Star Formation Rate Density

2022 ◽  
Vol 924 (2) ◽  
pp. 71
Author(s):  
Yoshihisa Asada ◽  
Kouji Ohta

Abstract We search for Hα emitters at z ∼ 7.8 in four gravitationally lensed fields observed in the Hubble Frontier Fields program. We use the Lyman break method to select galaxies at the target redshift and perform photometry in the Spitzer/IRAC 5.8 μm band to detect Hα emission from the candidate galaxies. We find no significant detections of counterparts in the IRAC 5.8 μm band, and this gives a constraint on the Hα luminosity function (LF) at z ∼ 7.8. We compare the constraint with previous studies based on rest-frame UV and far-infrared observations using the correlation between the Hα luminosity and the star formation rate. Additionally, we convert the constraint on the Hα LF into an upper limit for the star formation rate density (SFRD) at this epoch assuming the shape of the LF. We examine two types of parameterization of the LF and obtain an upper limit for the SFRD of log 10 ( ρ SFR [ M ⊙ yr − 1 Mpc − 3 ] ) ≲ − 1.1 at z ∼ 7.8. With this constraint on the SFRD, we present an independent probe into the total star formation activity including dust-obscured and unobscured star formation at the Epoch of Reionization.

Author(s):  
Lucia Marchetti ◽  
Mattia Vaccari ◽  
Alberto Franceschini

AbstractWe exploit the Herschel Extragalactic Multi-Tiered Survey (HerMES) dataset along with ancillary multi-wavelength photometry and spectroscopy from the Spitzer Data Fusion to provide the most accurate determination to date of the local (0.02<z<0.5) Far-Infrared Luminosity and Star Formation Rate Function. We present and compare our results with model predictions as well as other multi-wavelength estimates of the local star formation rate density.


2007 ◽  
Vol 654 (1) ◽  
pp. 172-185 ◽  
Author(s):  
Tomas Dahlen ◽  
Bahram Mobasher ◽  
Mark Dickinson ◽  
Henry C. Ferguson ◽  
Mauro Giavalisco ◽  
...  

2020 ◽  
Vol 634 ◽  
pp. A97 ◽  
Author(s):  
Y. Khusanova ◽  
O. Le Fèvre ◽  
P. Cassata ◽  
O. Cucciati ◽  
B. C. Lemaux ◽  
...  

Context. The star formation rate density (SFRD) evolution presents an area of great interest in the studies of galaxy evolution and reionization. The current constraints of SFRD at z >  5 are based on the rest-frame UV luminosity functions with the data from photometric surveys. The VIMOS UltraDeep Survey (VUDS) was designed to observe galaxies at redshifts up to ∼6 and opened a window for measuring SFRD at z >  5 from a spectroscopic sample with a well-controlled selection function. Aims. We establish a robust statistical description of the star-forming galaxy population at the end of cosmic HI reionization (5.0 ≤ z ≤ 6.6) from a large sample of 49 galaxies with spectroscopically confirmed redshifts. We determine the rest-frame UV and Lyα luminosity functions and use them to calculate SFRD at the median redshift of our sample z = 5.6. Methods. We selected a sample of galaxies at 5.0 ≤ zspec ≤ 6.6 from the VUDS. We cleaned our sample from low redshift interlopers using ancillary photometric data. We identified galaxies with Lyα either in absorption or in emission, at variance with most spectroscopic samples in the literature where Lyα emitters (LAE) dominate. We determined luminosity functions using the 1/Vmax method. Results. The galaxies in this redshift range exhibit a large range in their properties. A fraction of our sample shows strong Lyα emission, while another fraction shows Lyα in absorption. UV-continuum slopes vary with luminosity, with a large dispersion. We find that star-forming galaxies at these redshifts are distributed along the main sequence in the stellar mass vs. SFR plane, described with a slope α = 0.85 ± 0.05. We report a flat evolution of the specific SFR compared to lower redshift measurements. We find that the UV luminosity function is best reproduced by a double power law, while a fit with a Schechter function is only marginally inferior. The Lyα luminosity function is best fitted with a Schechter function. We derive a logSFRDUV(M⊙ yr−1 Mpc−3) = −1.45+0.06−0.08 and logSFRDLyα(M⊙ yr−1 Mpc−3) = −1.40+0.07−0.08. The SFRD derived from the Lyα luminosity function is in excellent agreement with the UV-derived SFRD after correcting for IGM absorption. Conclusions. Our new SFRD measurements at a mean redshift of z = 5.6 are ∼0.2 dex above the mean SFRD reported in Madau & Dickinson (2014, ARA&A, 52, 415), but in excellent agreement with results from Bouwens et al. (2015a, ApJ, 803, 34). These measurements confirm the steep decline of the SFRD at z >  2. The bright end of the Lyα luminosity function has a high number density, indicating a significant star formation activity concentrated in the brightest LAE at these redshifts. LAE with equivalent width EW > 25 Å contribute to about 75% of the total UV-derived SFRD. While our analysis favors low dust content in 5.0 <  z <  6.6, uncertainties on the dust extinction correction and associated degeneracy in spectral fitting will remain an issue, when estimating the total SFRD until future surveys extending spectroscopy to the NIR rest-frame spectral domain, such as with JWST.


2019 ◽  
Vol 631 ◽  
pp. A109 ◽  
Author(s):  
L. Wang ◽  
F. Gao ◽  
K. J. Duncan ◽  
W. L. Williams ◽  
M. Rowan-Robinson ◽  
...  

Aims. We aim to study the far-infrared radio correlation (FIRC) at 150 MHz in the local Universe (at a median redshift ⟨z⟩∼0.05) and improve the use of the rest-frame 150 MHz luminosity, L150, as a star-formation rate (SFR) tracer, which is unaffected by dust extinction. Methods. We cross-match the 60 μm selected Revised IRAS Faint Source Survey Redshift (RIFSCz) catalogue and the 150 MHz selected LOFAR value-added source catalogue in the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) Spring Field. We estimate L150 for the cross-matched sources and compare it with the total infrared (IR) luminosity, LIR, and various SFR tracers. Results. We find a tight linear correlation between log L150 and log LIR for star-forming galaxies, with a slope of 1.37. The median qIR value (defined as the logarithm of the LIR to L150 ratio) and its rms scatter of our main sample are 2.14 and 0.34, respectively. We also find that log L150 correlates tightly with the logarithm of SFR derived from three different tracers, i.e., SFRHα based on the Hα line luminosity, SFR60 based on the rest-frame 60 μm luminosity and SFRIR based on LIR, with a scatter of 0.3 dex. Our best-fit relations between L150 and these SFR tracers are, log L150 (L⊙) = 1.35(±0.06) × log SFRHα (M⊙ yr−1) + 3.20(±0.06), log L150 (L⊙) = 1.31(±0.05) × log SFR60 (M⊙ yr−1) + 3.14(±0.06), and log L150 (L⊙) = 1.37 (±0.05) × log SFRIR (M⊙ yr−1) + 3.09(±0.05), which show excellent agreement with each other.


2006 ◽  
Vol 2 (S235) ◽  
pp. 373-375
Author(s):  
Rychard J. Bouwens ◽  
Garth D. Illingworth

AbstractWe have assembled large samples of galaxies at redshift z ~ 4, 5 and 6 (totalling >4300 objects, >1000 objects, >500 objects, respectively) from all the deep HST ACS and NICMOS data taken to date (over 2000 orbits of data). From these we have derived rest-frame UV luminosity functions, luminosity densities, and star formation rates in a very robust and consistent way to very faint luminosities (0.01L* to 0.04L*). The faint-end slopes α of these luminosity functions are remarkably uniform and steep (α ~ −1.7), indicating very little evolution from z ~ 6 to z ~ 4. The characteristic luminosity L* brightens considerably (by ~1 mag) over this period, but the overall change in the luminosity function is such as to lead to little change in the luminosity density and star formation rate over this time. We also have detected galaxies at z ~ 7 − 8 and set strong limits at z ~ 10 directly from deep HST NICMOS observations. Spitzer observations of these z ~ 7 galaxies have been used to estimate masses and ages, suggesting substantial formation at z ~ 10 or earlier. These results show that this hierachical build-up continues into the reionization epoch.


1987 ◽  
Vol 115 ◽  
pp. 647-647
Author(s):  
U. Klein ◽  
J. Heidmann ◽  
R. Wielebinski ◽  
E. Wunderlich

The four clumpy irregular galaxies Mkr 8, 296,297 and 325 have been observed by IRAS. All galaxies have been detected in at least two of the four detector bands. The ratios of the 100 to 60-m flux densities are comparable to those of HII regions or violently star forming galaxies. The average star formation rate in clumpy irregular galaxies is of the order of a few solar masses per year (based on their average far-infrared luminosity and a Hubble constant of 75 km s−1 Mpc−1.


2010 ◽  
Vol 714 (2) ◽  
pp. 1256-1279 ◽  
Author(s):  
D. Calzetti ◽  
S.-Y. Wu ◽  
S. Hong ◽  
R. C. Kennicutt ◽  
J. C. Lee ◽  
...  

2020 ◽  
Vol 501 (1) ◽  
pp. 1046-1058
Author(s):  
Valeria Mesa ◽  
Sol Alonso ◽  
Georgina Coldwell ◽  
Diego García Lambas ◽  
J L Nilo Castellon

ABSTRACT We use SDSS-DR14 to construct a sample of galaxy systems consisting of a central object and two satellites. We adopt projected distance and radial velocity difference criteria and impose an isolation criterion to avoid membership in larger structures. We also classify the interaction between the members of each system through a visual inspection of galaxy images, finding ${\sim}80{{\ \rm per\ cent}}$ of the systems lack evidence of interactions whilst the remaining ${\sim}20{{\ \rm per\ cent}}$ involve some kind of interaction, as inferred from their observed distorted morphology. We have considered separately, samples of satellites and central galaxies, and each of these samples were tested against suitable control sets to analyse the results. We find that central galaxies showing signs of interactions present evidence of enhanced star formation activity and younger stellar populations. As a counterpart, satellite samples show these galaxies presenting older stellar populations with a lower star formation rate than the control sample. The observed trends correlate with the stellar mass content of the galaxies and with the projected distance between the members involved in the interaction. The most massive systems are less affected since they show no star formation excess, possibly due to their more evolved stage and less gas available to form new stars. Our results suggest that it is arguably a transfer of material during interactions, with satellites acting as donors to the central galaxy. As a consequence of the interactions, satellite stellar population ages rapidly and new bursts of star formation may frequently occur in the central galaxy.


2021 ◽  
Vol 7 (2) ◽  
pp. 49-57
Author(s):  
D. N. Chhatkuli ◽  
S. Paudel ◽  
A. K. Gautam ◽  
B. Aryal

We studied the spectroscopic properties of the low redshift (z = 0.0130) interacting dwarf galaxy SDSS J114818.18-013823.7. It is a compact galaxy of half-light radius 521 parsec. It’s r-band absolute magnitude is -16.71 mag. Using a publicly available optical spectrum from the Sloan Sky Survey data archive, we calculated star-formation rate, emission line metallicity, and dust extinction of the galaxy. Star formation rate (SFR) due to Hα is found to be 0.118 Mʘ year-1 after extinction correction. The emission-line metallicity, 12+log(O/H), is 8.13 dex. Placing these values in the scaling relation of normal galaxies, we find that SDSS J114818.18-013823.7 is a significant outlier from both size-magnitude relation and SFR-B-band absolute relation. Although SDSS J114818.18-013823.7 possess enhance rate of star-formation, the current star-formation activity can persist several Giga years in the future at the current place and it remains compact.


2020 ◽  
Vol 899 (1) ◽  
pp. 5
Author(s):  
Kei Ito ◽  
Nobunari Kashikawa ◽  
Jun Toshikawa ◽  
Roderik Overzier ◽  
Mariko Kubo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document