scholarly journals Evolution of the rest-frame UV LF from z ~ 8 to z ~ 4

2006 ◽  
Vol 2 (S235) ◽  
pp. 373-375
Author(s):  
Rychard J. Bouwens ◽  
Garth D. Illingworth

AbstractWe have assembled large samples of galaxies at redshift z ~ 4, 5 and 6 (totalling >4300 objects, >1000 objects, >500 objects, respectively) from all the deep HST ACS and NICMOS data taken to date (over 2000 orbits of data). From these we have derived rest-frame UV luminosity functions, luminosity densities, and star formation rates in a very robust and consistent way to very faint luminosities (0.01L* to 0.04L*). The faint-end slopes α of these luminosity functions are remarkably uniform and steep (α ~ −1.7), indicating very little evolution from z ~ 6 to z ~ 4. The characteristic luminosity L* brightens considerably (by ~1 mag) over this period, but the overall change in the luminosity function is such as to lead to little change in the luminosity density and star formation rate over this time. We also have detected galaxies at z ~ 7 − 8 and set strong limits at z ~ 10 directly from deep HST NICMOS observations. Spitzer observations of these z ~ 7 galaxies have been used to estimate masses and ages, suggesting substantial formation at z ~ 10 or earlier. These results show that this hierachical build-up continues into the reionization epoch.

2020 ◽  
Vol 634 ◽  
pp. A97 ◽  
Author(s):  
Y. Khusanova ◽  
O. Le Fèvre ◽  
P. Cassata ◽  
O. Cucciati ◽  
B. C. Lemaux ◽  
...  

Context. The star formation rate density (SFRD) evolution presents an area of great interest in the studies of galaxy evolution and reionization. The current constraints of SFRD at z >  5 are based on the rest-frame UV luminosity functions with the data from photometric surveys. The VIMOS UltraDeep Survey (VUDS) was designed to observe galaxies at redshifts up to ∼6 and opened a window for measuring SFRD at z >  5 from a spectroscopic sample with a well-controlled selection function. Aims. We establish a robust statistical description of the star-forming galaxy population at the end of cosmic HI reionization (5.0 ≤ z ≤ 6.6) from a large sample of 49 galaxies with spectroscopically confirmed redshifts. We determine the rest-frame UV and Lyα luminosity functions and use them to calculate SFRD at the median redshift of our sample z = 5.6. Methods. We selected a sample of galaxies at 5.0 ≤ zspec ≤ 6.6 from the VUDS. We cleaned our sample from low redshift interlopers using ancillary photometric data. We identified galaxies with Lyα either in absorption or in emission, at variance with most spectroscopic samples in the literature where Lyα emitters (LAE) dominate. We determined luminosity functions using the 1/Vmax method. Results. The galaxies in this redshift range exhibit a large range in their properties. A fraction of our sample shows strong Lyα emission, while another fraction shows Lyα in absorption. UV-continuum slopes vary with luminosity, with a large dispersion. We find that star-forming galaxies at these redshifts are distributed along the main sequence in the stellar mass vs. SFR plane, described with a slope α = 0.85 ± 0.05. We report a flat evolution of the specific SFR compared to lower redshift measurements. We find that the UV luminosity function is best reproduced by a double power law, while a fit with a Schechter function is only marginally inferior. The Lyα luminosity function is best fitted with a Schechter function. We derive a logSFRDUV(M⊙ yr−1 Mpc−3) = −1.45+0.06−0.08 and logSFRDLyα(M⊙ yr−1 Mpc−3) = −1.40+0.07−0.08. The SFRD derived from the Lyα luminosity function is in excellent agreement with the UV-derived SFRD after correcting for IGM absorption. Conclusions. Our new SFRD measurements at a mean redshift of z = 5.6 are ∼0.2 dex above the mean SFRD reported in Madau & Dickinson (2014, ARA&A, 52, 415), but in excellent agreement with results from Bouwens et al. (2015a, ApJ, 803, 34). These measurements confirm the steep decline of the SFRD at z >  2. The bright end of the Lyα luminosity function has a high number density, indicating a significant star formation activity concentrated in the brightest LAE at these redshifts. LAE with equivalent width EW > 25 Å contribute to about 75% of the total UV-derived SFRD. While our analysis favors low dust content in 5.0 <  z <  6.6, uncertainties on the dust extinction correction and associated degeneracy in spectral fitting will remain an issue, when estimating the total SFRD until future surveys extending spectroscopy to the NIR rest-frame spectral domain, such as with JWST.


2007 ◽  
Vol 654 (1) ◽  
pp. 172-185 ◽  
Author(s):  
Tomas Dahlen ◽  
Bahram Mobasher ◽  
Mark Dickinson ◽  
Henry C. Ferguson ◽  
Mauro Giavalisco ◽  
...  

2022 ◽  
Vol 924 (2) ◽  
pp. 71
Author(s):  
Yoshihisa Asada ◽  
Kouji Ohta

Abstract We search for Hα emitters at z ∼ 7.8 in four gravitationally lensed fields observed in the Hubble Frontier Fields program. We use the Lyman break method to select galaxies at the target redshift and perform photometry in the Spitzer/IRAC 5.8 μm band to detect Hα emission from the candidate galaxies. We find no significant detections of counterparts in the IRAC 5.8 μm band, and this gives a constraint on the Hα luminosity function (LF) at z ∼ 7.8. We compare the constraint with previous studies based on rest-frame UV and far-infrared observations using the correlation between the Hα luminosity and the star formation rate. Additionally, we convert the constraint on the Hα LF into an upper limit for the star formation rate density (SFRD) at this epoch assuming the shape of the LF. We examine two types of parameterization of the LF and obtain an upper limit for the SFRD of log 10 ( ρ SFR [ M ⊙ yr − 1 Mpc − 3 ] ) ≲ − 1.1 at z ∼ 7.8. With this constraint on the SFRD, we present an independent probe into the total star formation activity including dust-obscured and unobscured star formation at the Epoch of Reionization.


2020 ◽  
Vol 899 (1) ◽  
pp. 5
Author(s):  
Kei Ito ◽  
Nobunari Kashikawa ◽  
Jun Toshikawa ◽  
Roderik Overzier ◽  
Mariko Kubo ◽  
...  

2019 ◽  
Vol 488 (2) ◽  
pp. 2202-2221 ◽  
Author(s):  
Jason Jaacks ◽  
Steven L Finkelstein ◽  
Volker Bromm

ABSTRACT We utilize gizmo, coupled with newly developed sub-grid models for Population III (Pop III) and Population II (Pop II), to study the legacy of star formation in the pre-reionization Universe. We find that the Pop II star formation rate density (SFRD), produced in our simulation (${\sim } 10^{-2}\ \mathrm{M}_\odot \, {\rm yr^{-1}\, Mpc^{-3}}$ at z ≃ 10), matches the total SFRD inferred from observations within a factor of &lt;2 at 7 ≲ z ≲ 10. The Pop III SFRD, however, reaches a plateau at ${\sim }10^{-3}\ \mathrm{M}_\odot \, {\rm yr^{-1}\, Mpc^{-3}}$ by z ≈ 10, remaining largely unaffected by the presence of Pop II feedback. At z  = 7.5, ${\sim } 20{{\ \rm per\ cent}}$ of Pop III star formation occurs in isolated haloes that have never experienced any Pop II star formation (i.e. primordial haloes). We predict that Pop III-only galaxies exist at magnitudes MUV ≳ −11, beyond the limits for direct detection with the James Webb Space Telescope. We assess that our stellar mass function (SMF) and UV luminosity function (UVLF) agree well with the observed low mass/faint-end behaviour at z = 8 and 10. However, beyond the current limiting magnitudes, we find that both our SMF and UVLF demonstrate a deviation/turnover from the expected power-law slope (MUV,turn = −13.4 ± 1.1 at z  = 10). This could impact observational estimates of the true SFRD by a factor of 2(10) when integrating to MUV = −12 (−8) at z ∼ 10, depending on integration limits. Our turnover correlates well with the transition from dark matter haloes dominated by molecular cooling to those dominated by atomic cooling, for a mass Mhalo ≈ 108 M⊙ at z ≃ 10.


Author(s):  
Lucia Marchetti ◽  
Mattia Vaccari ◽  
Alberto Franceschini

AbstractWe exploit the Herschel Extragalactic Multi-Tiered Survey (HerMES) dataset along with ancillary multi-wavelength photometry and spectroscopy from the Spitzer Data Fusion to provide the most accurate determination to date of the local (0.02<z<0.5) Far-Infrared Luminosity and Star Formation Rate Function. We present and compare our results with model predictions as well as other multi-wavelength estimates of the local star formation rate density.


Author(s):  
James E. Upjohn ◽  
Michael J. I. Brown ◽  
Andrew M. Hopkins ◽  
Nicolas J. Bonne

AbstractWe measure the cosmic star formation history out to z = 1.3 using a sample of 918 radio-selected star-forming galaxies within the 2-deg2 COSMOS field. To increase our sample size, we combine 1.4-GHz flux densities from the VLA-COSMOS catalogue with flux densities measured from the VLA-COSMOS radio continuum image at the positions of I &lt; 26.5 galaxies, enabling us to detect 1.4-GHz sources as faint as 40 μJy. We find that radio measurements of the cosmic star formation history are highly dependent on sample completeness and models used to extrapolate the faint end of the radio luminosity function. For our preferred model of the luminosity function, we find the star formation rate density increases from 0.017 M⊙ yr−1 Mpc−3 at z ∼ 0.225 to 0.092 M⊙ yr−1 Mpc−3 at z ∼ 1.1, which agrees to within 40% of recent UV, IR and 3-GHz measurements of the cosmic star formation history.


2016 ◽  
Vol 11 (S321) ◽  
pp. 360-362
Author(s):  
Marc Rafelski

AbstractIn order to understand the origin of the decreased star formation rate (SFR) efficiency of neutral atomic hydrogen gas measured in Damped Lyα Systems (DLAs) at z ~ 3, we measure the SFR efficiency of atomic gas at z ~ 1, z ~ 2, and z ~ 3 around star-forming galaxies. We create galaxy stacks in these three redshift bins, and measure the SFR efficiency by combining DLA absorber statistics with the observed rest-frame UV emission in the galaxies’ outskirts. We find that the SFR efficiency of Hi gas is ~ 3% of that predicted by the KS relation. We find no significant evolution in the SFR efficiency with redshift, although simulations and models predict a decreasing SFR efficiency with decreasing metallicity and thus with increasing redshift. We discuss possible explanations for this decreased efficiency without an evolution with redshift.


2013 ◽  
Vol 780 (2) ◽  
pp. 143 ◽  
Author(s):  
Anahita Alavi ◽  
Brian Siana ◽  
Johan Richard ◽  
Daniel P. Stark ◽  
Claudia Scarlata ◽  
...  

2019 ◽  
Vol 631 ◽  
pp. A10 ◽  
Author(s):  
Marina Ramón-Pérez ◽  
Ángel Bongiovanni ◽  
Ana María Pérez García ◽  
Jordi Cepa ◽  
Maritza A. Lara-López ◽  
...  

Aims. We take advantage of the capability of the OTELO survey to obtain the Hα luminosity function (LF) at z ∼ 0.40. Because of the deepest coverage of OTELO, we are able to determine the faint end of the LF, and thus better constrain the star formation rate and the number of galaxies at low luminosities. The AGN contribution to this LF is estimated as well. Methods. We make use of the multiwavelength catalogue of objects in the field compiled by the OTELO survey, which is unique in terms of minimum flux and equivalent width. We also take advantage of the pseudo-spectra built for each source, which allow the identification of emission lines and the discrimination of different types of objects. Results. The Hα luminosity function at z ∼ 0.40 is obtained, which extends the current faint end by almost 1 dex, reaching minimal luminosities of log10Llim = 38.5 erg s−1 (or ∼0.002 M⊙ yr−1). The AGN contribution to the total Hα luminosity is estimated. We find that no AGN should be expected below a luminosity of log10L = 38.6 erg s−1. From the sample of non-AGN (presumably, pure SFG) at z ∼ 0.40 we estimated a star formation rate density of ρSFR = 0.012 ± 0.005 M⊙ yr−1 Mpc−3.


Sign in / Sign up

Export Citation Format

Share Document