scholarly journals Enhanced Energy Transfer Rate in Solar Wind Turbulence Observed near the Sun from Parker Solar Probe

2020 ◽  
Vol 246 (2) ◽  
pp. 48 ◽  
Author(s):  
Riddhi Bandyopadhyay ◽  
M. L. Goldstein ◽  
B. A. Maruca ◽  
W. H. Matthaeus ◽  
T. N. Parashar ◽  
...  
2020 ◽  
Author(s):  
Ying Wang ◽  
Jiansen He ◽  
Die Duan ◽  
Xingyu Zhu

<p>By analyzing the turbulent magnetic field data from PSP, we find that: the solar wind turbulence in the inner heliosphere close to the Sun has formed the transition from multifractal intermittency at MHD scales to monofractal intermittency at kinetic scales. The order-dependent scaling exponent of the multi-order structure function shows a concave profile indicating the multifractal property at MHD scales, while its counterpart at kinetic scales shows a linear trend suggesting the monofractal property. We also find that, the closer to the sun, the more obvious the concave profile of the scaling exponent in the inertial range, which indicates that the multifractal characteristic of the magnetic field turbulence intermittency is also more evident when getting closer to the Sun.</p><p>Based on the Castaing description of the probability distribution function(PDF) of the disturbance difference, the key parameters(μ & λ^2) of the Castaing function are estimated as a function of scale. We find that: (1) when close to the sun (R~0.17 AU), the break point of μ is about 0.2 second, and the peak point of λ^2 is about 0.6 second, the two of which are about three times different in scale; (2) when far from the sun (R~0.8 AU), the break point of μ is about 1 second and the peak point of λ^2 is about 3 seconds, the two of which are also about three times different in scale. We also point out that the profiles (including the break/peak position) of both the parameters (μ & λ^2) along with the scale together determine the profile (including the spectral breaks) of the power spectrum.</p><p>Following the PP98 model function of incompressible MHD turbulent cascade rate (εZ), we first compared the cascade rate εZ with εB=<δB^3>/τ at the distance close to the sun, we find that the two trends over scales are in good agreement with one another. We therefore suggest that, to some extent (e.g. in the inertial region), εB=<δB^3>/τ can be used as a proxy of the cascade rate εZ. For the first time, by statistical analysis, we obtained that εB satisfies the following relation with the scale and the heliocentric distance: εB=((τ/τ0)^α)((r/r0)^β). In the inertial range, α changes from about -0.5 to about 0.5 as r increases from 0.17 AU to 0.81 AU, and β is about 6.4; in the kenetic range, when r increases from 0.17 AU to 0.25 AU, α keeps at about 2, and β is about 12.8. The εB(τ,r) expression given in this work, is believed to help understanding the transport and cascade processes of solar wind turbulence in the inner heliosphere. </p><p>Corresponding author:<br>Jiansen HE, [email protected]</p><p>Acknowledgements:<br>We would like to thank the PSP team for providing the data of PSP to the public.</p>


Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 163
Author(s):  
Coburn ◽  
Sorriso-Valvo

We develop incompressible magnetohydrodynamic (IMHD) energy budget equations witha spatial filtering kernel and estimate the scaling of the structure functions. The Politano-Pouquetlaw is recovered as an upper bound on the scale-to-scale energy transfer. The primary result ofthis work is the relation of the scaling of IMHD invariants. It can be produced by hypothesizing ascale-independent energy transfer rate. These results have relevance in plasma regimes where theapproximations of IMHD are justified. We measure structure functions with solar wind data and findsupport for the relations.


2021 ◽  
Author(s):  
Wen Liu ◽  
Jinsong Zhao ◽  
Huasheng Xie ◽  
Dejin Wu

<p>Differential flow among different ion species are always observed in the solar wind, and such ion differential flow can provide a free energy to drive the Alfven/ion-cyclotron and fast-magnetosonic/whistler instabilities. Previous works on the ion beam instability are mainly focused on the solar wind parameters at 1 au. We extend this study using the radial model of the magnetic field and plasma parameters in the inner heliosphere. We present the distributions of the energy transfer rate among the unstable waves and the particles, which would be useful to predict the change of parallel and perpendicular temperatures during the instability evolution. Moreover, we propose an effective growth length to estimate the effective growth in each instability, and we explore that the oblique Alfven/ion-cyclotron instability, the oblique fast-magnetosonic/whistler instability and the oblique Alfven/ion-beam instability can be effectively driven by proton beams having speed of 500-2000 km/s in the solar atmosphere. We also show that the unstable waves driven by the proton beam instability would be responsible for the solar corona heating. These predictions can be checked by in situ satellite measurements in the inner heliosphere.</p>


2005 ◽  
Vol 36 (8) ◽  
pp. 1454-1460 ◽  
Author(s):  
I.V. Chashei ◽  
A.I. Efimov ◽  
L.N. Samoznaev ◽  
D. Plettemeier ◽  
M.K. Bird

2016 ◽  
Vol 116 (12) ◽  
Author(s):  
C. Perschke ◽  
Y. Narita ◽  
U. Motschmann ◽  
K. H. Glassmeier

1982 ◽  
Vol 80 ◽  
pp. 433-436 ◽  
Author(s):  
R.T. Bailey ◽  
F.R. Cruickshank ◽  
R. Guthrie ◽  
D. Pugh ◽  
I.J.M. Weir

Sign in / Sign up

Export Citation Format

Share Document