interplanetary shocks
Recently Published Documents


TOTAL DOCUMENTS

399
(FIVE YEARS 58)

H-INDEX

47
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Darshana Mandal ◽  
Federico Fraschetti ◽  
Joe Giacalone ◽  
Lan Jian ◽  
Zehao Dong

2021 ◽  
pp. 213-240
Author(s):  
Hannu E. J. Koskinen ◽  
Emilia K. J. Kilpua

AbstractIn this chapter we discuss the overall structure and dynamics of the electron belts and some of their peculiar features. We also consider the large-scale solar wind structures that drive geomagnetic storms and detail the specific responses of radiation belts on them. Numerous satellite observations have highlighted the strong variability of the outer electron belt and the slot region during the storms, and the energy and L-shell dependence of these variations. The belts can also experience great variations when interplanetary shocks or pressure pulses impact the Earth, even without a following storm sequence.


2021 ◽  
Author(s):  
Hannah Ruedisser ◽  
Andreas Windisch ◽  
Ute V. Amerstorfer ◽  
David Píša ◽  
Jan Soucek

<p>Planetary magnetospheres create multiple sharp boundaries, such as the bow shock, where the solar wind plasma is decelerated and compressed, or the magnetopause, a transition between solar wind field and planetary field.<br />We attempt to use convolutional neural networks (CNNs) to identify magnetospheric boundaries, i.e.  planetary and interplanetary shocks crossings and magnetopause crossings in spacecraft in situ data. The boundaries are identified by a discontinuity in a magnetic field, plasma density, and in the spectrum of high-frequency waves. These measurements are available on many planetary missions. Data from Earth's missions Cluster and THEMIS are used for CNN training. We ultimately strive for successful classification of boundaries (shock, magnetopause, inbound, outbound) and the correct handling of multiple crossings.</p>


2021 ◽  
Author(s):  
Liam David ◽  
Federico Fraschetti ◽  
Joe Giacalone ◽  
Robert Wimmer-Schweingruber ◽  
Lars Berger ◽  
...  

2021 ◽  
Vol 913 (2) ◽  
pp. 144
Author(s):  
L. A. Davis ◽  
C. A. Cattell ◽  
L. B. Wilson ◽  
Z. A. Cohen ◽  
A. W. Breneman ◽  
...  

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Shinichi Watari ◽  
Satoko Nakamura ◽  
Yusuke Ebihara

AbstractWe need a typical method of directly measuring geomagnetically induced current (GIC) to compare data for estimating a potential risk of power grids caused by GIC. Here, we overview GIC measurement systems that have appeared in published papers, note necessary requirements, report on our equipment, and show several examples of our measurements in substations around Tokyo, Japan. Although they are located at middle latitudes, GICs associated with various geomagnetic disturbances are observed, such as storm sudden commencements (SSCs) or sudden impulses (SIs) caused by interplanetary shocks, geomagnetic storms including a storm caused by abrupt southward turning of strong interplanetary magnetic field (IMF) associated with a magnetic cloud, bay disturbances caused by high-latitude aurora activities, and geomagnetic variation caused by a solar flare called the solar flare effect (SFE). All these results suggest that GIC at middle latitudes is sensitive to the magnetospheric current (the magnetopause current, the ring current, and the field-aligned current) and also the ionospheric current.


2021 ◽  
Vol 8 ◽  
Author(s):  
A. Pitňa ◽  
J. Šafránková ◽  
Z. Němeček ◽  
T. Ďurovcová ◽  
A. Kis

The paper reviews the interaction of collisionless interplanetary (IP) shocks with the turbulent solar wind. The coexistence of shocks and turbulence plays an important role in understanding the acceleration of particles via Fermi acceleration mechanisms, the geoeffectiveness of highly disturbed sheaths following IP shocks and, among others, the nature of the fluctuations themselves. Although our knowledge of physics of upstream and downstream shock regions has been greatly improved in recent years, many aspects of the IP-shock/turbulence interaction are still poorly known, for example, the nature of turbulence, its characteristics on spatial and temporal scales, how it decays, its relation to shock passage and others. We discuss properties of fluctuations ahead (upstream) and behind (downstream) of IP shock fronts with the focus on observations. Some of the key characteristics of the upstream/downstream transition are 1) enhancement of the power in the inertial range fluctuations of the velocity, magnetic field and density is roughly one order of magnitude, 2) downstream fluctuations are always more compressible than the upstream fluctuations, and 3) energy in the inertial range fluctuations is kept constant for a significant time after the passage of the shock. In this paper, we emphasize that–for one point measurements–the downstream region should be viewed as an evolutionary record of the IP shock propagation through the plasma. Simultaneous measurements of the recently launched spacecraft probing inner parts of the Solar System will hopefully shed light on some of these questions.


Sign in / Sign up

Export Citation Format

Share Document