relative orientation
Recently Published Documents


TOTAL DOCUMENTS

556
(FIVE YEARS 77)

H-INDEX

39
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Ding Zhang ◽  
Kari Goodbar ◽  
Nicole West ◽  
Veronique Lesage ◽  
Susan E Parks ◽  
...  

Biologging tags are a key enabling tool for investigating cetacean behavior and locomotion in their natural habitat. Identifying and then parameterizing gait from movement sensor data is critical for these investigations. But how best to characterize gait from tag data remains an open question. Further, the location and orientation of the tag on an animal in the field are variable and can change multiple times during deployment. As a result, the relative orientation of the tag with respect to (wrt) the animal must be determined before a wide variety of further analyses. Currently, custom scripts that involve specific manual heuristics methods tend to be used in the literature. These methods require a level of knowledge and experience that can affect the reliability and repeatability of the analysis. The authors of this work argue that an animal's gait is composed of a sequence of body poses observed by the tag, demonstrating a specific spatial pattern in the data that can be utilized for different purposes. This work presents an automated data processing pipeline (and software) that takes advantage of the common characteristics of pose and gait of the animal to 1) Identify time instances associated with occurrences of relative motion between the tag and animal; 2) Identify the relative orientation of tag wrt the animal’s body for a given data segment; and 3) Extract gait parameters that are invariant to pose and tag orientation. The authors included biologging tag data from bottlenose dolphins, humpback whales, and beluga whales in this work to validate and demonstrate the approach. Results show that the average relative orientation error of the tag wrt the dolphin’s body after processing was within 11 degrees in roll, pitch, and yaw directions. The average precision and recall for identifying relative tag motion were 0.87 and 0.89, respectively.  Examples of the resulting pose and gait analysis demonstrate the potential of this approach to enhance studies that use tag data to investigate movement and behavior. MATLAB source code and data presented in the paper were made available to the public (https://github.com/ding-z/cetacean-pose-gait-analysis.git), with suggestions related to tag data processing practices provided in this paper. The proposed analysis approach will facilitate the use of biologging tags to study cetacean locomotion and behavior.


2021 ◽  
Vol 87 (12) ◽  
pp. 913-922
Author(s):  
Ningning Zhu ◽  
Bisheng Yang ◽  
Zhen Dong ◽  
Chi Chen ◽  
Xia Huang ◽  
...  

To register mobile mapping system (MMS) lidar points and panoramic-image sequences, a relative orientation model of panoramic images (PROM) is proposed. The PROM is suitable for cases in which attitude or orientation parameters are unknown in the panoramic-image sequence. First, feature points are extracted and matched from panoramic-image pairs using the SURF algorithm. Second, these matched feature points are used to solve the relative attitude parameters in the PROM. Then, combining the PROM with the absolute position and attitude parameters of the initial panoramic image, the MMS lidar points and panoramic-image sequence are registered. Finally, the registration accuracy of the PROM method is assessed using corresponding points manually selected from the MMSlidar points and panoramic-image sequence. The results show that three types of MMSdata sources are registered accurately based on the proposed registration method. Our method transforms the registration of panoramic images and lidar points into image feature-point matching, which is suitable for diverse road scenes compared with existing methods.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ding-Fu Shao ◽  
Shu-Hui Zhang ◽  
Ming Li ◽  
Chang-Beom Eom ◽  
Evgeny Y. Tsymbal

AbstractElectric currents carrying a net spin polarization are widely used in spintronics, whereas globally spin-neutral currents are expected to play no role in spin-dependent phenomena. Here we show that, in contrast to this common expectation, spin-independent conductance in compensated antiferromagnets and normal metals can be efficiently exploited in spintronics, provided their magnetic space group symmetry supports a non-spin-degenerate Fermi surface. Due to their momentum-dependent spin polarization, such antiferromagnets can be used as active elements in antiferromagnetic tunnel junctions (AFMTJs) and produce a giant tunneling magnetoresistance (TMR) effect. Using RuO2 as a representative compensated antiferromagnet exhibiting spin-independent conductance along the [001] direction but a non-spin-degenerate Fermi surface, we design a RuO2/TiO2/RuO2 (001) AFMTJ, where a globally spin-neutral charge current is controlled by the relative orientation of the Néel vectors of the two RuO2 electrodes, resulting in the TMR effect as large as ~500%. These results are expanded to normal metals which can be used as a counter electrode in AFMTJs with a single antiferromagnetic layer or other elements in spintronic devices. Our work uncovers an unexplored potential of the materials with no global spin polarization for utilizing them in spintronics.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ana Poveda ◽  
Giulio Fittolani ◽  
Peter H. Seeberger ◽  
Martina Delbianco ◽  
Jesús Jiménez-Barbero

The intrinsic flexibility of glycans complicates the study of their structures and dynamics, which are often important for their biological function. NMR has provided insights into the conformational, dynamic and recognition features of glycans, but suffers from severe chemical shift degeneracy. We employed labelled glycans to explore the conformational behaviour of a β(1-6)-Glc hexasaccharide model through residual dipolar couplings (RDCs). RDC delivered information on the relative orientation of specific residues along the glycan chain and provided experimental clues for the existence of certain geometries. The use of two different aligning media demonstrated the adaptability of flexible oligosaccharide structures to different environments.


2021 ◽  
Vol 906 (1) ◽  
pp. 012069
Author(s):  
Stanislav Hodas ◽  
Jana Izvoltova ◽  
Donatas Rekus

Abstract The inertial measurement unit is an electronic device built-in practically in any controlled or autonomous technology used for land mapping. It is based on a combination of accelerometers and gyroscopes and sometimes magnetometers used for relative orientation and navigation. The paper is focused on functions and trends of an inertial measurement unit, which is a part of inertial navigation indicator of position and velocity of moving devices on the ground, above and below ground in real-time.


2021 ◽  
Vol 2093 (1) ◽  
pp. 012025
Author(s):  
Zehong Wang ◽  
Long Xiao

Abstract After the oblique aerial photography technology is used to collect the stereo image, it is necessary to use the relative orientation method to check the image parameters. After the rectification process is completed, the 3D software is used to draw the 3D model to meet the subsequent application requirements. The author of this paper analyzes the difficulty of the matching and aerial photography, including affine transformation cannot successful transformation, influence there covered phenomenon and characteristic finishing is difficult, the combination of fundamental matrix tilt aerial photography as a method of relative orientation, through the study of oblique aerial photography based matrix as precision control points, its aim is to continuously optimize tilt aerial photography as the content, improve the use value of collation results.


2021 ◽  
Author(s):  
Yue Zhang ◽  
Dandan Dong ◽  
Tao Xiong ◽  
Wei Wang ◽  
Cheng Sun

Abstract This work reports on the plasmonic properties of a symmetry-breaking system consisting of rhodium dual broken nanorings, in the ultraviolet-visible regime. In the structure, two rhodium broken rings are located with a separation on the scale of nanometers. As the separation, the light polarization, and the relative orientation of the broken angles are respectively varied, the plasmonic scattering efficiency of the system is investigated, using the finite difference time domain method. Multiple plasmonic resonances are revealed, and the associated asymmetry-induced Fano-like lineshapes are fitted to a model that employs multiple Fano lineshape functions. The resonance wavelengths, the spectral widths, and the characteristic q values are determined from the best fit parameters, and the plasmonic characteristics of the system are quantitatively probed. The results in this work may be beneficial in designs of plasmonic devices that operates at ultraviolet-visible wavelengths.


2021 ◽  
Vol 48 (11) ◽  
Author(s):  
Otto E. O. Zeman ◽  
Jennifer Steinadler ◽  
Rupert Hochleitner ◽  
Thomas Bräuniger

AbstractCerussite, $$\hbox {PbCO}_3$$ PbCO 3 , like all members of the aragonite group, shows a tendency to form twins, due to high pseudo-symmetry within the crystal structure. We here demonstrate that the twin law of a cerussite contact twin may be established using only $$^{207}$$ 207 Pb-NMR spectroscopy. This is achieved by a global fit of several sets of orientation-dependent spectra acquired from the twin specimen, allowing to determine the relative orientation of the twin domains. Also, the full $$^{207}$$ 207 Pb chemical shift tensor in cerussite at room temperature is determined from these data, with the eigenvalues being $$\delta _{11} = (-2315\pm 1)$$ δ 11 = ( - 2315 ± 1 )  ppm, $$\delta _{22} = (-2492 \pm 3)$$ δ 22 = ( - 2492 ± 3 )  ppm, and $$\delta _{33} = (-3071 \pm 3)$$ δ 33 = ( - 3071 ± 3 )  ppm.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sofia S. Kudryavtseva ◽  
Evgeny B. Pichkur ◽  
Igor A. Yaroshevich ◽  
Aleksandra A. Mamchur ◽  
Irina S. Panina ◽  
...  

AbstractThe GroEL–GroES chaperonin complex is a bacterial protein folding system, functioning in an ATP-dependent manner. Upon ATP binding and hydrolysis, it undergoes multiple stages linked to substrate protein binding, folding and release. Structural methods helped to reveal several conformational states and provide more information about the chaperonin functional cycle. Here, using cryo-EM we resolved two nucleotide-bound structures of the bullet-shaped GroEL–GroES1 complex at 3.4 Å resolution. The main difference between them is the relative orientation of their apical domains. Both structures contain nucleotides in cis and trans GroEL rings; in contrast to previously reported bullet-shaped complexes where nucleotides were only present in the cis ring. Our results suggest that the bound nucleotides correspond to ADP, and that such a state appears at low ATP:ADP ratios.


Author(s):  
Kevin Gray ◽  
Jeffrey Frame

AbstractDespite an increased understanding of environments favorable for tornadic supercells, it is still sometimes unknown why one favorable environment produces many long-tracked tornadic supercells and another seemingly equally-favorable environment produces only short-lived supercells. One relatively unexplored environmental parameter that may differ between such environments is the degree of backing or veering of the midlevel shear vector, especially considering that such variations may not be captured by traditional supercell or tornado forecast parameters. We investigate the impact of the 3-6 km shear vector orientation on simulated supercell evolution by systematically varying it across a suite of idealized simulations. We found that the orientation of the 3-6 km shear vector dictates where precipitation loading is maximized in the storms, and thus alters the storm-relative location of downdrafts and outflow surges. When the shear vector is backed, outflow surges generally occur northwest of an updraft, produce greater convergence beneath the updraft, and do not disrupt inflow, meaning that the storm is more likely to persist and produce more tornado-like vortices (TLVs). When the shear vector is veered, outflow surges generally occur north of an updraft, produce less convergence beneath the updraft, and sometimes undercut it with outflow, causing it to tilt at low levels, sometimes leading to storm dissipation. These storms are shorter lived and thus also produce fewer TLVs. Our simulations indicate that the relative orientation of the 3-6 km shear vector may impact supercell longevity and hence the time period over which tornadoes may form.


Sign in / Sign up

Export Citation Format

Share Document