scholarly journals NATAL KICKS AND TIME DELAYS IN MERGING NEUTRON STAR BINARIES: IMPLICATIONS FOR r -PROCESS NUCLEOSYNTHESIS IN ULTRA-FAINT DWARFS AND IN THE MILKY WAY

2016 ◽  
Vol 829 (1) ◽  
pp. L13 ◽  
Author(s):  
Paz Beniamini ◽  
Kenta Hotokezaka ◽  
Tsvi Piran
Keyword(s):  
2019 ◽  
Vol 876 (1) ◽  
pp. 28 ◽  
Author(s):  
Mohammadtaher Safarzadeh ◽  
Richard Sarmento ◽  
Evan Scannapieco
Keyword(s):  

2015 ◽  
Vol 11 (S317) ◽  
pp. 318-319
Author(s):  
Yutaka Komiya ◽  
Toshikazu Shigeyama

AbstractThe main astronomical source of r-process elements has not yet been identified. One plausible site is neutron star mergers (NSMs). From the perspective of Galactic chemical evolution, however, it has been pointed out that the NSM scenario is incompatible with observations. Recently, Tsujimoto & Shigeyama (2014) pointed out that NSM ejecta can spread into much larger volume than ejecta from a supernova. We re-examine the chemical evolution of r-process elements under the NSM scenario considering this difference in propagation of the ejecta. We find that the NSM scenario can be compatible with the observed abundances of the Milky Way halo stars.


2020 ◽  
Vol 494 (4) ◽  
pp. 4867-4883 ◽  
Author(s):  
Freeke van de Voort ◽  
Rüdiger Pakmor ◽  
Robert J J Grand ◽  
Volker Springel ◽  
Facundo A Gómez ◽  
...  

ABSTRACT We use cosmological, magnetohydrodynamical simulations of Milky Way-mass galaxies from the Auriga project to study their enrichment with rapid neutron capture (r-process) elements. We implement a variety of enrichment models from both binary neutron star mergers and rare core-collapse supernovae. We focus on the abundances of (extremely) metal-poor stars, most of which were formed during the first ∼Gyr of the Universe in external galaxies and later accreted on to the main galaxy. We find that the majority of metal-poor stars are r-process enriched in all our enrichment models. Neutron star merger models result in a median r-process abundance ratio, which increases with metallicity, whereas the median trend in rare core-collapse supernova models is approximately flat. The scatter in r-process abundance increases for models with longer delay times or lower rates of r-process-producing events. Our results are nearly perfectly converged, in part due to the mixing of gas between mesh cells in the simulations. Additionally, different Milky Way-mass galaxies show only small variation in their respective r-process abundance ratios. Current (sparse and potentially biased) observations of metal-poor stars in the Milky Way seem to prefer rare core-collapse supernovae over neutron star mergers as the dominant source of r-process elements at low metallicity, but we discuss possible caveats to our models. Dwarf galaxies that experience a single r-process event early in their history show highly enhanced r-process abundances at low metallicity, which is seen both in observations and in our simulations. We also find that the elements produced in a single event are mixed with ≈108 M⊙ of gas relatively quickly, distributing the r-process elements over a large region.


2014 ◽  
Vol 447 (1) ◽  
pp. 140-148 ◽  
Author(s):  
Freeke van de Voort ◽  
Eliot Quataert ◽  
Philip F. Hopkins ◽  
Dušan Kereš ◽  
Claude-André Faucher-Giguère

2019 ◽  
Vol 875 (2) ◽  
pp. 106 ◽  
Author(s):  
Benoit Côté ◽  
Marius Eichler ◽  
Almudena Arcones ◽  
Camilla J. Hansen ◽  
Paolo Simonetti ◽  
...  

2015 ◽  
Vol 11 (S317) ◽  
pp. 310-311
Author(s):  
M. N. Ishigaki ◽  
T. Tsujimoto ◽  
T. Shigeyama ◽  
W. Aoki

AbstractA dominant astrophysical site for r-process, which is responsible for producing heavy neutron-capture elements, is unknown. Dwarf spheroidal galaxies around the Milky Way halo provide ideal laboratories to investigate the origin and evolution of r-process elements. We carried out high-resolution spectroscopic observations of three giant stars in the Draco dwarf spheroidal galaxy to estimate their europium abundances. We found that the upper-limits of [Eu/H] are very low in the range [Fe/H] < −2, while this ratio is nearly constant at higher metallicities. This trend is not well reproduced with models which assume that Eu is produced together with Fe by SNe, and may suggest the contribution from other objects such as neutron-star mergers.


2021 ◽  
Vol 103 (2) ◽  
Author(s):  
J.-F. Lemaître ◽  
S. Goriely ◽  
A. Bauswein ◽  
H.-T. Janka

2018 ◽  
Vol 619 ◽  
pp. A143 ◽  
Author(s):  
G. Guiglion ◽  
P. de Laverny ◽  
A. Recio-Blanco ◽  
N. Prantzos

Context. The chemical evolution of neutron capture elements in the Milky Way disc is still a matter of debate. There is a lack of statistically significant catalogues of such element abundances, especially those of the r-process. Aims. We aim to understand the chemical evolution of r-process elements in Milky Way disc. We focus on three pure r-process elements Eu, Gd, and Dy. We also consider a pure s-process element, Ba, in order to disentangle the different nucleosynthesis processes. Methods. We take advantage of high-resolution FEROS, HARPS, and UVES spectra from the ESO archive in order to perform a homogeneous analysis on 6500 FGK Milky Way stars. The chemical analysis is performed thanks to the automatic optimization pipeline GAUGUIN. We present abundances of Ba (5057 stars), Eu (6268 stars), Gd (5431 stars), and Dy (5479 stars). Based on the [α/Fe] ratio determined previously by the AMBRE Project, we chemically characterize the thin and the thick discs, and a metal-rich α-rich population. Results. First, we find that the [Eu/Fe] ratio follows a continuous sequence from the thin disc to the thick disc as a function of the metallicity. Second, in thick disc stars, the [Eu/Ba] ratio is found to be constant, while the [Gd/Ba] and [Dy/Ba] ratios decrease as a function of the metallicity. These observations clearly indicate a different nucleosynthesis history in the thick disc between Eu and Gd–Dy. The [r/Fe] ratio in the thin disc is roughly around +0.1 dex at solar metallicity, which is not the case for Ba. We also find that the α-rich metal-rich stars are also enriched in r-process elements (like thick disc stars), but their [Ba/Fe] is very different from thick disc stars. Finally, we find that the [r/α] ratio tends to decrease with metallicity, indicating that supernovae of different properties probably contribute differently to the synthesis of r-process elements and α-elements. Conclusions. We provide average abundance trends for [Ba/Fe] and [Eu/Fe] with rather small dispersions, and for the first time for [Gd/Fe] and [Dy/Fe]. This data may help to constrain chemical evolution models of Milky Way r- and s-process elements and the yields of massive stars. We emphasize that including yields of neutron-star or black hole mergers is now crucial if we want to quantitatively compare observations to Galactic chemical evolution models.


2016 ◽  
Author(s):  
M. Eichler ◽  
A. Arcones ◽  
A. Kelic ◽  
O. Korobkin ◽  
K. Langanke ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document