thin disc
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 35)

H-INDEX

21
(FIVE YEARS 6)

2021 ◽  
Vol 508 (1) ◽  
pp. 719-727
Author(s):  
V Grisoni ◽  
F Matteucci ◽  
D Romano

ABSTRACT We study the evolution of nitrogen (N) in the Galactic halo, thick disc, thin disc, and bulge by comparing detailed chemical evolution models with recent observations. The models used in this work have already been constrained to explain the abundance patterns of α-elements and the metallicity distribution functions of halo, disc, and bulge stars; here, we adopt them to investigate the origin and evolution of N in the different Galactic components. First, we consider different sets of yields and study the importance of the various channels proposed for N production. Secondly, we apply the reference models to study the evolution of both the Galactic discs and bulge. We conclude that: i) primary N produced by rotating massive stars is required to reproduce the plateau in log(N/O) and [N/Fe] ratios at low metallicity, as well as the secondary and primary production from low- and intermediate-mass stars to reproduce the data of the thin disc; ii) the parallel model can provide a good explanation of the evolution of N abundance in the thick and thin discs, and we confirm that the thick disc has evolved much faster than the thin disc, in agreement with the results from the abundance patterns of other chemical elements; and iii) finally, we present new model predictions for N evolution in the Galactic bulge, and we show that the observations in bulge stars can be explained if massive stars rotate fast during the earliest phases of Galactic evolution, in agreement with findings from the abundance pattern of carbon.


Author(s):  
William J Potter

Abstract The widely used Novikov-Thorne relativistic thin disc equations are only valid down to the radius of the innermost-stable circular orbit (ISCO). This leads to an undetermined boundary condition at the ISCO, known as the inner stress of the disc, which sets the luminosity of the disc at the ISCO and introduces considerable ambiguity in accurately determining the mass, spin and accretion rate of black holes from observed spectra. We resolve this ambiguity by self-consistently extending the relativistic disc solution through the ISCO to the black hole horizon by calculating the inspiral of an average disc particle subject to turbulent disc forces, using a new particle-in-disc technique. Traditionally it has been assumed that the stress at the ISCO is zero, with material plunging approximately radially into the black hole at close to the speed of light. We demonstrate that in fact the inspiral is less severe, with several (∼4 − 17) orbits completed before the horizon. This leads to a small non-zero stress and luminosity at and inside the ISCO, with a local surface temperature at the ISCO between ∼0.15 − 0.3 times the maximum surface temperature of the disc, in the case where no dynamically important net magnetic field is present. For a range of disc parameters we calculate the value of the inner stress/surface temperature, which is required when fitting relativistic thin disc models to observations. We resolve a problem in relativistic slim disc models in which turbulent heating becomes inaccurate and falls to zero inside the plunging region.


2021 ◽  
Vol 503 (2) ◽  
pp. 2814-2824
Author(s):  
Ioana Ciucă ◽  
Daisuke Kawata ◽  
Andrea Miglio ◽  
Guy R Davies ◽  
Robert J J Grand

ABSTRACT We develop a Bayesian Machine Learning framework called BINGO (Bayesian INference for Galactic archaeOlogy) centred around a Bayesian neural network. After being trained on the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and Kepler asteroseismic age data, BINGO is used to obtain precise relative stellar age estimates with uncertainties for the APOGEE stars. We carefully construct a training set to minimize bias and apply BINGO to a stellar population that is similar to our training set. We then select the 17 305 stars with ages from BINGO and reliable kinematic properties obtained from Gaia DR2. By combining the age and chemo-kinematical information, we dissect the Galactic disc stars into three components, namely the thick disc (old, high-[α/Fe], [α/Fe] ≳ 0.12), the thin disc (young, low-[α/Fe]), and the Bridge, which is a region between the thick and thin discs. Our results indicate that the thick disc formed at an early epoch only in the inner region, and the inner disc smoothly transforms to the thin disc. We found that the outer disc follows a different chemical evolution pathway from the inner disc. The outer metal-poor stars only start forming after the compact thick disc phase has completed and the star-forming gas disc extended outwardly with metal-poor gas accretion. We found that in the Bridge region the range of [Fe/H] becomes wider with decreasing age, which suggests that the Bridge region corresponds to the transition phase from the smaller chemically well-mixed thick to a larger thin disc with a metallicity gradient.


2021 ◽  
Vol 126 (6) ◽  
Author(s):  
Z. Wang ◽  
Y. Tian ◽  
C. Zhang ◽  
Y. Wang ◽  
W. Deng
Keyword(s):  

Author(s):  
Leandro Beraldo e Silva ◽  
Victor P Debattista ◽  
David Nidever ◽  
João A S Amarante ◽  
Bethany Garver

Abstract Since thin disc stars are younger than thick disc stars on average, the thin disc is predicted by some models to start forming after the thick disc had formed, around 10 Gyr ago. Accordingly, no significant old thin disc population should exist. Using 6-D coordinates from Gaia-DR2 and age estimates from Sanders & Das (2018), we select ∼24000 old stars (${\tau > 10{\, \rm{Gyr}}}$, with uncertainties $\lesssim 15\%$) within $2{\, \rm{kpc}}$ from the Sun (full sample). A cross-match with APOGEE-DR16 (∼1000 stars) reveals comparable fractions of old chemically defined thin/thick disc stars. We show that the full sample pericenter radius (rper) distribution has three peaks, one associated with the stellar halo and the other two having contributions from the thin/thick discs. Using a high-resolution N-body+SPH simulation, we demonstrate that one peak, at ${r_\rm{per}}\approx 7.1{\, \rm{kpc}}$, is produced by stars from both discs which were born in the inner Galaxy and migrated to the Solar Neighbourhood. In the Solar Neighbourhood, ∼1/2 (∼1/3) of the old thin (thick) disc stars are classified as migrators. Our results suggest that thin/thick discs are affected differently by radial migration inasmuch as they have different eccentricity distributions, regardless of vertical scale heights. We interpret the existence of a significant old thin disc population as evidence for an early co-formation of thin/thick discs, arguing that clump instabilities in the early disc offer a compelling explanation for the observed trends.


Author(s):  
Narendra Nath Patra

Abstract Several recent studies reinforce the existence of a thick molecular disc in galaxies along with the dynamically cold thin disc. Assuming a two-component molecular disc, we model the disc of NGC 6946 as a four-component system consisting of stars, H i, thin disc molecular gas, and thick disc molecular gas in vertical hydrostatic equilibrium. Following, we set up the joint Poisson-Boltzmann equation of hydrostatic equilibrium and solve it numerically to obtain a three-dimensional density distribution of different baryonic components. Using the density solutions and the observed rotation curve, we further build a three-dimensional dynamical model of the molecular disc and consecutively produce simulated CO spectral cubes and spectral width profiles. We find that the simulated spectral width profiles distinguishably differ for different assumed thick disc molecular gas fractions. Several CO spectral width profiles are then produced for different assumed thick disc molecular gas fractions and compared with the observed one to obtain the best fit thick disc molecular gas fraction profile. We find that the thick disc molecular gas fraction in NGC 6946 largely remains constant across its molecular disc with a mean value of 0.70 ± 0.09. We also estimate the amount of extra-planar molecular gas in NGC 6946. We find $\sim 50\%$ of the total molecular gas is extra-planar at the central region, whereas this fraction reduces to ∼ 15% at the edge of the molecular disc. With our method, for the first time, we estimate the thick disc molecular gas fraction as a function of radius in an external galaxy with sub-kpc resolution.


2020 ◽  
Vol 499 (2) ◽  
pp. 2196-2213
Author(s):  
R B Botelho ◽  
A de C Milone ◽  
J Meléndez ◽  
A Alves-Brito ◽  
L Spina ◽  
...  

ABSTRACT Abundances of light elements in dwarf stars of different ages are important constraints for stellar yields, Galactic chemical evolution and exoplanet chemical composition studies. We have measured C and N abundances and 12C/13C ratios for a sample of 63 solar twins spanning a wide range in age, based on spectral synthesis of a comprehensive list of CH A-X and CN B-X features using HARPS spectra. The analysis of 55 thin disc solar twins confirms the dependences of [C/Fe] and [N/Fe] on [Fe/H]. [N/Fe] is investigated as a function of [Fe/H] and age for the first time for these stars. Our derived correlation [C/Fe]–age agrees with works for solar-type stars and solar twins, but the [N/Fe]–age correlation does not. The relations [C,N/Fe]–[Fe/H] and [C,N/Fe]–age for the solar twins lay under solar. 12C/13C is found correlated with [Fe/H] and seems to have decreased along the evolution of the local thin disc. Predictions from chemical evolution models for the solar vicinity corroborate the relations [C,N/Fe]–[Fe/H], 12C/13C–age, and [N/O]–[O/H], but do not for the 12C/13C–[Fe/H] and [C/O]–[O/H] relations. The N/O ratio in the Sun is placed at the high end of the homogeneous distribution of solar twins, which suggests uniformity in the N–O budget for the formation of icy planetesimals, watery superearths, and giant planets. C and N had different nucleosynthetic origins along the thin disc evolution, as shown by the relations of [C/N], [C/O], and [N/O] against [O/H] and age. [C/N] and [C/O] are particularly observed increasing in time for solar twins younger than the Sun.


2020 ◽  
Vol 641 ◽  
pp. A78
Author(s):  
C. Babusiaux ◽  
C. Fourtune-Ravard ◽  
C. Hottier ◽  
F. Arenou ◽  
A. Gómez

Context. While Gaia enables us to probe the extended local neighbourhood in great detail, the thin disc structure at larger distances remains sparsely explored. Aims. We aim here to build a non-parametric 3D model of the thin disc structures handling both the extinction and the stellar density simultaneously. Methods. We developed a Bayesian deconvolution method in two dimensions: extinction and distance. It uses a reference catalogue whose completeness information defines the selection function. It is designed so that any complementary information from other catalogues can be added. It has also been designed to be robust to outliers, which are frequent in crowded fields, and differential extinction. The prior information is designed to be minimal: only a reference H-R diagram. We derived for this an empirical H-R diagram of the thin disc using Gaia DR2 data, but synthetic isochrone-based H-R diagrams can also be used. Results. We validated the method on simulations and real fields using 2MASS and UKIDSS data complemented by Gaia DR2 photometry and parallaxes. We detail the results of two test fields: a 2MASS field centred around the NGC 4815 open cluster, which shows an over-density of both extinction and stellar density at the cluster distance, and a UKIDSS field at l = 10° where we recover the position of the Galactic bar.


2020 ◽  
Vol 641 ◽  
pp. A110
Author(s):  
P. Gondoin

Context. The chromospheric emission in the cores of the Ca II H & K lines of late-type dwarfs is a well known indicator of magnetic activity that decreases with increasing stellar age. Aims. I use this indicator to investigate the formation history of nearby G- and early K-type stars with origins at galactocentric distances similar to that of the region where the Sun was born. Methods. A parent sample of single main-sequence stars with near-solar metallicity and known magnetic activity levels is built from catalogues of stellar atmospheric parameters and chromospheric activity indices. A kinematical approach uses Gaia astrometric data to differentiate thin disc stars from thick disc stars. Measured distributions of R′HK chromospheric activity indices are compared with Monte Carlo simulations based on an empirical model of chromospheric activity evolution. Results. The thin disc includes a significant fraction of Sun-like stars with intermediate activity levels (2 × 10−5 ≤ R′HK ≤ 6 × 10−5), while most early K- and G-type stars from the thick disc are inactive (R′HK < 2 × 10−5). The chromospheric activity distribution among nearby Sun-like dwarfs from the thin disc can be explained by a combination of an old (>6–7 Gyr) star formation event (or events) and a more recent (<3 Gyr) burst of star formation. Such an event is not required to account for the R′HK index distributions of nearby thick disc stars. Conclusions. The distribution of magnetic activity among local G- and early K-type stars with a near-solar metallicity bears the imprint of an important star formation event that occurred ~1.9–2.6 Gyr ago in the thin disc of the Milky Way.


2020 ◽  
Vol 641 ◽  
pp. A79
Author(s):  
C. Hottier ◽  
C. Babusiaux ◽  
F. Arenou

Aims. We aim to map the 3D distribution of the interstellar extinction of the Milky Way disc up to distances larger than those probed with the Gaia parallax alone. Methods. We applied the FEDReD (Field Extinction-Distance Relation Deconvolver) algorithm to the 2MASS near-infrared photometry together with the Gaia DR2 astrometry and photometry. This algorithm uses a Bayesian deconvolution approach, based on an empirical HR-diagram representative of the local thin disc, in order to map the extinction as a function of distance of various fields of view. Results. We analysed more than 5.6 million stars to obtain an extinction map of the entire Galactic disc within |b| < 0.24°. This map provides information up to 5 kpc in the direction of the Galactic centre and more than 7 kpc in the direction of the anticentre. This map reveals the complete shape of structures that are known locally, such as the Vela complex and the split of the local arm. Furthermore, our extinction map shows many large “clean bubbles”, especially the one in the Sagittarius-Carina complex, and four others, which define a structure that we nickname the butterfly.


Sign in / Sign up

Export Citation Format

Share Document