Spatial Variability of Strength of Brittle Materials Under High-Strain-Rate Loadings

Author(s):  
Cynthia Zingale ◽  
Lori Graham-Brady
2018 ◽  
Vol 183 ◽  
pp. 02042
Author(s):  
Lloyd Fletcher ◽  
Fabrice Pierron

Testing ceramics at high strain rates presents many experimental diffsiculties due to the brittle nature of the material being tested. When using a split Hopkinson pressure bar (SHPB) for high strain rate testing, adequate time is required for stress wave effects to dampen out. For brittle materials, with small strains to failure, it is difficult to satisfy this constraint. Because of this limitation, there are minimal data (if any) available on the stiffness and tensile strength of ceramics at high strain rates. Recently, a new image-based inertial impact (IBII) test method has shown promise for analysing the high strain rate behaviour of brittle materials. This test method uses a reflected compressive stress wave to generate tensile stress and failure in an impacted specimen. Throughout the propagation of the stress wave, full-field displacement measurements are taken, from which strain and acceleration fields are derived. The acceleration fields are then used to reconstruct stress information and identify the material properties. The aim of this study is to apply the IBII test methodology to analyse the stiffness and strength of ceramics at high strain rates. The results show that it is possible to identify the elastic modulus and tensile strength of tungsten carbide at strain rates on the order of 1000 s-1. For a tungsten carbide with 13% cobalt binder the elastic modulus was identified as 516 GPa and the strength was 1400 MPa. Future applications concern boron carbide and sapphire, for which limited data exist in high rate tension.


1985 ◽  
Vol 46 (C5) ◽  
pp. C5-511-C5-516
Author(s):  
A. Kobayashi ◽  
S. Hashimoto ◽  
Li-lih Wang ◽  
M. Toba

1988 ◽  
Vol 49 (C3) ◽  
pp. C3-145-C3-149 ◽  
Author(s):  
N. A. FLECK ◽  
S. C. WRIGHT ◽  
J. H. LIU ◽  
W. J. STRONGE

Sign in / Sign up

Export Citation Format

Share Document