scholarly journals Berberine attenuates myocardial ischemia reperfusion injury by suppressing the activation of PI3K/AKT signaling

2016 ◽  
Vol 11 (3) ◽  
pp. 978-984 ◽  
Author(s):  
ZHU QIN-WEI ◽  
LI YONG-GUANG
Author(s):  
Xueying Tong ◽  
Jiajuan Chen ◽  
Wei Liu ◽  
Hui Liang ◽  
Hezhong Zhu

AbstractCardiovascular diseases rank the top cause of morbidity and mortality worldwide and are usually associated with blood reperfusion after myocardial ischemia/reperfusion injury (MIRI), which often causes severe pathological damages and cardiomyocyte apoptosis. LSINCT5 expression in the plasma of MI patients (n = 53), healthy controls (n = 42) and hypoxia-reoxygenation (HR)-treated cardiomyocyte AC16 cells was examined using qRT-PCR. The effects of LSINCT5 on cell viability and apoptosis were detected by MTT and flow cytometry, respectively. The expression of apoptosis-related proteins Bcl2, Bax and caspase 3 were tested by Western blot. The interaction between LSINCT5 and miR-222 was predicted by bioinformatic analysis. Moreover, changes in viability and apoptosis of AC16 cells co-transfected with siLSINCT5 and miR-222 inhibitor after HR treatment were examined. At last, the expression of proteins in PI3K/AKT pathway, namely PTEN, PI3K and AKT, was examined to analyze the possible pathway participating in LSINCT5-mediated MI/RI. Our study showed that LSINCT5 expression was upregulated in the plasma of MI patients and HR-treated AC16 cells. LSINCT5 overexpression significantly decreased cell viability and apoptosis. Luciferase reporter gene assay and RNA pulldown assay showed that LSINCT5 was a molecular sponge of miR-222. MiR-222 silencing in AC16 cells simulated the phenotypes of MIRI patients and HR-treated cells, indicating that LSINCT5 functions via miR-222 to regulate proliferation and apoptosis of HR-treated AC16 cells. We also showed that proteins of PI3K/AKT signaling pathway were affected in HR-treated AC16 cells, and LSINTC5 knockdown rescued these effects. LncRNA LSINCT5 was upregulated during MI pathogenesis, and LSINCT5 regulated MIRI possibly via a potential LSINCT5/miR-222 axis and PI3K/AKT signaling pathway. Our findings may provide novel evidence for MIRI prevention.


2012 ◽  
Vol 90 (5) ◽  
pp. 637-645 ◽  
Author(s):  
Jun-Yan Zhang ◽  
Zhi-Wu Chen ◽  
Hua Yao

Urantide is the most potent UT receptor antagonist compound found to date. Our previous studies have shown that it has cardioprotective effect against ischemia–reperfusion injury. However, it is unclear which signal transduction pathways are involved in the urantide-induced cardioprotective effect. This study was designed to investigate whether the effect of urantide on myocardial ischemia–reperfusion injury in rats via the protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI3K)–Akt signaling pathway. The results showed that urantide at 10 and 30 µg/kg markedly inhibited the increases in serum creatine kinase fraction and lactate dehydrogenase activities and the level of cardiac troponin I, reduced the ratio of myocardial infarct size to area at risk. Urantide significantly decreased the histological damage to the myocardium and modified the ultrastructural damage in cardiac myocytes. In the presence of chelerythrine (an inhibitor of PKC, 1 mg/kg) or LY294002 (an inhibitor of PI3K–Akt, 0.3 mg/kg), the protective effect of urantide was almost completely abolished. Urantide (30 µg/kg) markedly enhanced the expression of p-Akt protein during myocardial ischemia–reperfusion injury, and this enhancement was significantly attenuated by LY294002. Therefore, our results demonstrate that urantide has a potent protective effect against myocardial ischemia–reperfusion injury in rats that may be involved with the PKC and PI3K–Akt signaling pathways.


Sign in / Sign up

Export Citation Format

Share Document