Monoclonal antibody against Toll-like receptor 4 attenuates ventilator-induced lung injury in rats by inhibiting MyD88- and NF-κB-dependent signaling

2017 ◽  
Vol 39 (3) ◽  
pp. 693-700 ◽  
Author(s):  
Cuiyuan Huang ◽  
Linghui Pan ◽  
Fei Lin ◽  
Huijun Dai ◽  
Ruili Fu
2018 ◽  
Vol 18 (2) ◽  
pp. 162-169 ◽  
Author(s):  
Hongli Chen ◽  
Xiaotong Sun ◽  
Xiaomei Yang ◽  
Yonghao Hou ◽  
Xiaoqian Yu ◽  
...  

Mechanical ventilation (MV) may lead to ventilator-induced lung injury (VILI). Previous research has shown that dexmedetomidine attenuates pulmonary inflammation caused by MV, but the underlying mechanisms remain unclear. Our study aims to test whether dexmedetomidine has a protective effect against VILI and to explore the possible molecular mechanisms using the rat model. Thirty adult male Wistar rats weighing 200-250 g were randomly assigned to 5 groups (n = 6): control, low tidal volume MV (LMV), high tidal volume (HVT) MV (HMV), HVT MV + dexmedetomidine (DEX), HVT MV + dexmedetomidine + yohimbine (DEX+Y). Rats were euthanized after being ventilated for 4 hours. Pathological changes, lung wet/dry (W/D) weight ratio, lung myeloperoxidase (MPO) activity, levels of inflammatory cytokines (i.e., interleukin [IL]-1β, tumor necrosis factor alpha [TNF-α], and IL-6) in the bronchoalveolar lavage fluid (BALF) and lung tissues, expression of Toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB, and activation of NF-κB in lung tissues were measured. Compared with HMV, DEX group showed fewer pathological changes, lower W/D ratios and decreased MPO activity of the lung tissues and lower concentrations of the inflammatory cytokines in the BALF and lung tissues. Dexmedetomidine significantly inhibited the expression of TLR4 and NF-κB and activation of NF-κB. Yohimbine partly alleviated the effects of dexmedetomidine. Dexmedetomidine reduced the inflammatory response to HVT-MV and had a protective effect against VILI, with the inhibition of the TLR4/NF-κB signaling pathway, at least partly via α2-adrenoceptors.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Haosi Li ◽  
Pinhua Pan ◽  
Xiaoli Su ◽  
Shuai Liu ◽  
Lemeng Zhang ◽  
...  

The pathogenesis of ventilator-induced lung injury (VILI) is associated with neutrophils. Neutrophils release neutrophil extracellular traps (NETs), which are composed of DNA and granular proteins. However, the role of NETs in VILI remains incompletely understood. Normal saline and deoxyribonuclease (DNase) were used to study the role of NETs in VILI. To further determine the role of Toll-like receptor 4 (TLR4) in NETosis, we evaluated the lung injury and NET formation in TLR4 knockout mice and wild-type mice that were mechanically ventilated. Some measures of lung injury and the NETs markers were significantly increased in the VILI group. DNase treatment markedly reduced NETs markers and lung injury. After high-tidal mechanical ventilation, the NETs markers in the TLR4 KO mice were significantly lower than in the WT mice. These data suggest that NETs are generated in VILI and pathogenic in a mouse model of VILI, and their formation is partially dependent on TLR4.


2010 ◽  
Vol 113 (3) ◽  
pp. 619-629 ◽  
Author(s):  
Huihua Li ◽  
Xiaoli Su ◽  
Xuebin Yan ◽  
Karla Wasserloos ◽  
Wei Chao ◽  
...  

Background The mechanisms of ventilator-induced lung injury, an iatrogenic inflammatory condition induced by mechanical ventilation, are not completely understood. Toll-like receptor 4 (TLR4) signaling via the adaptor protein myeloid differentiation factor 88 (MyD88) is proinflammatory and plays a critical role in host immune response to invading pathogen and noninfectious tissue injury. The role of TLR4-MyD88 signaling in ventilator-induced lung injury remains incompletely understood. Methods Mice were ventilated with low or high tidal volume (HTV), 7 or 20 ml/kg, after tracheotomy for 4 h. Control mice were tracheotomized without ventilation. Lung injury was assessed by: alveolar capillary permeability to Evans blue albumin, wet/dry ratio, bronchoalveolar lavage analysis for cell counts, total proteins and cytokines, results of histopathological examination of the lung, and plasma cytokine levels. Results Wild-type mice subjected to HTV had increased pulmonary permeability, inflammatory cell infiltration/lung edema, and interleukin-6/macrophage-inflammatory protein-2 in the lavage compared with control mice. In HTV, levels of inhibitor of kappaB alpha decreased, whereas phosphorylated extracellular signal-regulated kinases increased. TLR4 mutant and MyD88 mice showed markedly attenuated response to HTV, including less lung inflammation, pulmonary edema, cell number, protein content, and the cytokines in the lavage. Furthermore, compared with wild-type mice, both TLR4 mutant and MyD88 mice had significantly higher levels of inhibitor of kappaB alpha and reduced extracellular signal-regulated kinase phosphorylation after HTV. Conclusions TLR4-MyD88 signaling plays an important role in the development of ventilator-induced lung injury in mice, possibly through mechanisms involving nuclear factor-kappaB and mitogen-activated protein kinase pathways.


2020 ◽  
Vol 19 (1) ◽  
pp. 120-126
Author(s):  
Ayinuerguli Adili ◽  
Adilijiang Kari ◽  
Chuanlong Song ◽  
Abulaiti Abuduhaer

We have examined the mechanism underlying amelioration of sepsis-induced acute lung injury by chelidonine in newborn mice. To this end, a sepsis model was established using cecal ligation and puncture in newborn mice. The sepsis-induced acute lung injury was associated with an increased inflammatory infiltration and pulmonary congestion, as well as abnormal alveolar morphology. The lung injury-associated increased tumor necrosis factor-α and interleukin-1β in bronchoalveolar lavage fluid and lung, the markers of inflammatory infiltration and pulmonary congestion, diminished by chelidonine treatment. Chelidonine administration also downregulated protein levels of toll-like receptor 4, myeloid differentiation factor 88, phosphorylated nuclear factor-kappa B, and nuclear factor-kappa B that are elevated in response to sepsis. In conclusion, chelidonine provides a potential therapeutic strategy for newborn mice with acute lung injury.


2020 ◽  
Vol 18 (2) ◽  
pp. 201-206
Author(s):  
Qiu Nan ◽  
Xu Xinmei ◽  
He Yingying ◽  
Fan Chengfen

Sepsis, with high mortality, induces deleterious organ dysfunction and acute lung injury. Natural compounds show protective effect against sepsis-induced acute lung injury. Juglone, a natural naphthoquinone, demonstrates pharmacological actions as a pro-apoptotic substrate in tumor treatment and anti-inflammation substrate in organ injury. In this study, the influence of juglone on sepsis-induced acute lung injury was investigated. First, a septic mice model was established via cecal ligation and puncture, and then verified via histopathological analysis of lung tissues, the wet/dry mass ratio and myeloperoxidase activity was determined. Cecal ligation and puncture could induce acute lung injury in septic mice, as demonstrated by alveolar damage and increase of wet/dry mass ratio and myeloperoxidase activity. However, intragastric administration juglone attenuated cecal ligation and puncture-induced acute lung injury. Secondly, cecal ligation and puncture-induced increase of inflammatory cells in bronchoalveolar lavage fluid was also alleviated by the administration of juglone. Similarly, the protective effect of juglone against cecal ligation and puncture-induced acute lung injury was accompanied by a reduction of pro-inflammatory factor secretion in bronchoalveolar lavage fluid and lung tissues. Cecal ligation and puncture could activate toll-like receptor 4/nuclear factor-kappa B signaling pathway, and administration of juglone suppressed toll-like receptor 4/nuclear factor-kappa B activation. In conclusion, juglone attenuated cecal ligation and puncture-induced lung damage and inflammatory response through inactivation of toll-like receptor 4/nuclear factor-kappa B, suggesting a potential therapeutic strategy in the treatment of sepsis-induced acute lung injury.


Dose-Response ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 155932582110113
Author(s):  
Rufeng Lu ◽  
Yueguo Wu ◽  
Honggang Guo ◽  
Zhuoyi Zhang ◽  
Yuzhou He

Influenza A virus infections can cause acute lung injury (ALI) in humans; thus, the identification of potent antiviral agents is urgently required. Herein, the effects of salidroside on influenza A virus-induced ALI were investigated in a murine model. BALB/c mice were intranasally inoculated with H1N1 virus and treated with salidroside. The results of this study show that salidroside treatment (30 and 60 mg/kg) significantly attenuated the H1N1 virus-induced histological alterations in the lung and inhibited inflammatory cytokine production. Salidroside also decreased the wet/dry ratio, viral titers, and Toll-like receptor 4 expression in the lungs. Therefore, salidroside may represent a potential therapeutic reagent for the treatment of influenza A virus-induced ALI.


2020 ◽  
Vol 19 (3) ◽  
pp. 277-282
Author(s):  
Tian Liu ◽  
Siyi Jiang ◽  
Shengwei Jia ◽  
Fuxiang Fan

Acute lung injury refers to the injury of alveolar epithelial cells and pulmonary capillary endothelial cells caused by noncardiac factors. To better combat the disease, there is an urgent need to develop more effective drugs. Sepsis is a syndrome of systemic inflammation caused by infection, and the molecular mechanism by which sepsis induces acute lung injury has not been clearly determined. Bilobalide is a unique component of Ginkgo biloba. Although it has multiple biological functions, its role in sepsis induced acute lung injury needs further study. In this study, we found that bilobalide alleviated cecal ligation and puncture induced acute lung injury. Additionally, bilobalide regulated cecal ligation and puncture induced lung injury through toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-kappa B pathway. We therefore conclude that bilobalide may be a potential drug for the treatment of sepsis induced acute lung injury.


Immunology ◽  
2019 ◽  
Vol 158 (2) ◽  
pp. 136-149
Author(s):  
Hiroki Tsukamoto ◽  
Kanae Kubota ◽  
Ayumi Shichiku ◽  
Masamitsu Maekawa ◽  
Nariyasu Mano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document