scholarly journals Tumor necrosis factor‑related apoptosis‑inducing ligand is a novel transcriptional target of runt‑related transcription factor 1

2021 ◽  
Vol 60 (1) ◽  
Author(s):  
Tatsushi Yoshida ◽  
Kenta Yamasaki ◽  
Kenjiro Tadagaki ◽  
Yasumichi Kuwahara ◽  
Akifumi Matsumoto ◽  
...  
2003 ◽  
Vol 23 (8) ◽  
pp. 2871-2882 ◽  
Author(s):  
Juan-Jose Ventura ◽  
Norman J. Kennedy ◽  
Jennifer A. Lamb ◽  
Richard A. Flavell ◽  
Roger J. Davis

ABSTRACT The c-Jun NH2-terminal kinase (JNK) is activated by the cytokine tumor necrosis factor (TNF). This pathway is implicated in the regulation of AP-1-dependent gene expression by TNF. To examine the role of the JNK signaling pathway, we compared the effects of TNF on wild-type and Jnk1 −/− Jnk2 −/− murine embryo fibroblasts. We show that JNK is required for the normal regulation of AP-1 by TNF. The JNK-deficient cells exhibited decreased expression of c-Jun, JunD, c-Fos, Fra1, and Fra2; decreased phosphorylation of c-Jun and JunD; and decreased AP-1 DNA binding activity. The JNK-deficient cells also exhibited defects in the regulation of the AP-1-related transcription factor ATF2. These changes were associated with marked defects in TNF-regulated gene expression. The JNK signal transduction pathway is therefore essential for AP-1 transcription factor regulation in cells exposed to TNF.


1998 ◽  
Vol 187 (7) ◽  
pp. 1069-1079 ◽  
Author(s):  
Klaus Ruckdeschel ◽  
Suzanne Harb ◽  
Andreas Roggenkamp ◽  
Mathias Hornef ◽  
Robert Zumbihl ◽  
...  

In this study, we investigated the activity of transcription factor NF-κB in macrophages infected with Yersinia enterocolitica. Although triggering initially a weak NF-κB signal, Y. enterocolitica inhibited NF-κB activation in murine J774A.1 and peritoneal macrophages within 60 to 90 min. Simultaneously, Y. enterocolitica prevented prolonged degradation of the inhibitory proteins IκB-α and IκB-β observed by treatment with lipopolysaccharide (LPS) or nonvirulent, plasmid-cured yersiniae. Analysis of different Y. enterocolitica mutants revealed a striking correlation between the abilities of these strains to inhibit NF-κB and to suppress the tumor necrosis factor α (TNF-α) production as well as to trigger macrophage apoptosis. When NF-κB activation was prevented by the proteasome inhibitor MG-132, nonvirulent yersiniae as well as LPS became able to trigger J774A.1 cell apoptosis and inhibition of the TNF-α secretion. Y. enterocolitica also impaired the activity of NF-κB in epithelial HeLa cells. Although neither Y. enterocolitica nor TNF-α could induce HeLa cell apoptosis alone, TNF-α provoked apoptosis when activation of NF-κB was inhibited by Yersinia infection or by the proteasome inhibitor MG-132. Together, these data demonstrate that Y. enterocolitica suppresses cellular activation of NF-κB, which inhibits TNF-α release and triggers apoptosis in macrophages. Our results also suggest that Yersinia infection confers susceptibility to programmed cell death to other cell types, provided that the appropriate death signal is delivered.


Sign in / Sign up

Export Citation Format

Share Document