scholarly journals Recurrent variation in the active NOR sites in the monkey frogs of the genus Pithecopus Cope, 1866 (Phyllomedusidae, Anura)

2019 ◽  
Vol 13 (3) ◽  
pp. 311-324
Author(s):  
Joana Moura Gama ◽  
Camilla Borges Gazolla ◽  
Deborah Yasmin de Souza ◽  
Shirlei Maria Recco-Pimentel ◽  
Daniel Pacheco Bruschi

Treefrogs of the genus Pithecopus Cope, 1866 exhibit expressive chromosomal homogeneity which contrasts with a high variation frequency of the nucleolus organizer region (NOR) related to the group. Currently, the genus contains eleven species and no chromosomal data are available on P. palliatus Peters, 1873, P. ayeaye Lutz, 1966 and P. megacephalus Miranda-Ribeiro, 1926. Here, we describe the karyotypes of these three species based on Giemsa staining, C-banding, silver impregnation and in situ hybridization (FISH). We were also analyze the evolutionary dynamic of the NOR-bearing chromosome in species of genus under a phylogenetic view. The results indicate that P. palliatus, P. ayeaye, and P. megacephalus have similar karyotypes, which are typical of the genus Pithecopus. In P. palliatus the NOR was detected in the pericentromeric region of pair 9p whereas in P. ayeaye and P. megacephalus we report cases of the multiple NOR sites in karyotypes. In P. ayeaye the NOR was detected in the pericentromeric region of pair 9p in both homologues and additional sites was detected in pairs 3q, 4p, and 8q, all confirmed by FISH experiments. Already in P. megacephalus the NOR sites were detected in pericentromeric region homologues of pair 8q and additionally in one chromosome of pair 13q. A comparative overview of all the Pithecopus karyotypes analyzed up to now indicates the recurrence of the NOR-bearing chromosome pairs and the position of the NORs sites on these chromosomes. We hypothesized that this feature is a result of a polymorphic condition present in the common ancestor of Pithecopus. In such case, the lineages derived from polymorphic ancestor have reached fixation independently after divergence of lineages, resulting in a high level of homoplasy observed in this marker. Our findings help to fill the gaps in the understanding of the karyotype of the genus Pithecopus and reinforce the role of the evolutionary dynamics of the rDNA genes in karyotype diversification in this group.

2019 ◽  
Vol 13 (4) ◽  
pp. 325-338
Author(s):  
Joana Moura Gama ◽  
Camilla Borges Gazolla ◽  
Deborah Yasmin de Souza ◽  
Shirlei Maria Recco-Pimentel ◽  
Daniel Pacheco Bruschi

Treefrogs of the genus Pithecopus Cope, 1866 exhibit expressive chromosomal homogeneity which contrasts with a high variation frequency of the nucleolus organizer region (NOR) related to the group. Currently, the genus contains eleven species and no chromosomal data are available on P. palliatus Peters, 1873, P. ayeaye Lutz, 1966 and P. megacephalus Miranda-Ribeiro, 1926. Here, we describe the karyotypes of these three species based on Giemsa staining, C-banding, silver impregnation and in situ hybridization (FISH). We were also analyze the evolutionary dynamic of the NOR-bearing chromosome in species of genus under a phylogenetic view. The results indicate that P. palliatus, P. ayeaye, and P. megacephalus have similar karyotypes, which are typical of the genus Pithecopus. In P. palliatus the NOR was detected in the pericentromeric region of pair 9p whereas in P. ayeaye and P. megacephalus we report cases of the multiple NOR sites in karyotypes. In P. ayeaye the NOR was detected in the pericentromeric region of pair 9p in both homologues and additional sites was detected in pairs 3q, 4p, and 8q, all confirmed by FISH experiments. Already in P. megacephalus the NOR sites were detected in pericentromeric region homologues of pair 8q and additionally in one chromosome of pair 13q. A comparative overview of all the Pithecopus karyotypes analyzed up to now indicates the recurrence of the NOR-bearing chromosome pairs and the position of the NORs sites on these chromosomes. We hypothesized that this feature is a result of a polymorphic condition present in the common ancestor of Pithecopus. In such case, the lineages derived from polymorphic ancestor have reached fixation independently after divergence of lineages, resulting in a high level of homoplasy observed in this marker. Our findings help to fill the gaps in the understanding of the karyotype of the genus Pithecopus and reinforce the role of the evolutionary dynamics of the rDNA genes in karyotype diversification in this group.


2020 ◽  
Vol 14 (1) ◽  
pp. 27-42
Author(s):  
Alber Sousa Campos ◽  
Ramon Marin Favarato ◽  
Eliana Feldberg

The karyotypes and chromosomal characteristics of three Acestrorhynchus Eigenmann et Kennedy, 1903 species were examined using conventional and molecular protocols. These species had invariably a diploid chromosome number 2n = 50. Acestrorhynchus falcatus (Block, 1794) and Acestrorhynchus falcirostris (Cuvier, 1819) had the karyotype composed of 16 metacentric (m) + 28 submetacentric (sm) + 6 subtelocentric (st) chromosomes while Acestrorhynchus microlepis (Schomburgk, 1841) had the karyotype composed of 14m+30sm+6st elements. In this species, differences of the conventional and molecular markers between the populations of Catalão Lake (AM) and of Apeu Stream (PA) were found. Thus the individuals of Pará (Apeu) were named Acestrorhynchus prope microlepis. The distribution of the constitutive heterochromatin blocks was species-specific, with C-positive bands in the centromeric and telomeric regions of a number of different chromosomes, as well as in interstitial sites and completely heterochromatic arms. The phenotypes of nucleolus organizer region (NOR) were simple, i. e. in a terminal position on the p arm of pair No. 23 except in A. microlepis, in which it was located on the q arm. Fluorescence in situ hybridization (FISH) revealed 18S rDNA sites on one chromosome pair in karyotype of A. falcirostris and A. prope microlepis (pair No. 23) and three pairs (Nos. 12, 23, 24) in A. falcatus and (Nos. 8, 23, 24) in A. microlepis; 5S rDNA sites were detected in one chromosome pair in all three species. The mapping of the telomeric sequences revealed terminal sequences in all the chromosomes, as well as the presence of interstitial telomeric sequences (ITSs) in a number of chromosome pairs. The cytogenetic data recorded in the present study indicate that A. prope microlepis may be an unnamed species.


Genome ◽  
1993 ◽  
Vol 36 (5) ◽  
pp. 815-817 ◽  
Author(s):  
S. Abbo ◽  
T. E. Miller ◽  
I. P. King

Primer-induced in situ hybridization of high copy sequences was used successfully on rye mitotic chromosome spreads. Nucleolus organizer sequences were detected in rye, and the pattern obtained was in full agreement with previously reported results by conventional in situ hybridization. The future potential of the primer-induced in situ hybridization technique is briefly discussed.Key words: primer-induced in situ hybridization, rye (Secale cereale L.), nucleolus organizer region.


Genome ◽  
1994 ◽  
Vol 37 (4) ◽  
pp. 713-716 ◽  
Author(s):  
S. Abbo ◽  
T. E. Miller ◽  
S. M. Reader ◽  
R. P. Dunford ◽  
I. P. King

Hybridization sites of an rDNA probe coding for the 18S, 5.8S, and 26S genes were detected on lentil and chickpea somatic chromosomes using fluorescent in situ hybridization. One pair of hybridization sites was detected in cultivated lentil Lens culinaris L. and wild lentil L. orientalis (Boiss.) Hand.-Mazz., and in both the hybridization sites of the ribosomal probe correspond to the secondary constriction. In cultivated chickpea Cicer arietinum three pairs of rDNA sites were detected and in the wild C. reticulatum two pairs were detected. The karyotypic relationship between the cultivated C. arietinum and its wild progenitor C. reticulatum is discussed.Key words: chickpea, lentil, rDNA sites, nucleolus organizer region, fluorescent in situ hybridization, primer-mediated in situ hybridization.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2551
Author(s):  
Agnese Petraccioli ◽  
Paolo Crovato ◽  
Fabio Guarino ◽  
Marcello Mezzasalma ◽  
Gaetano Odierna ◽  
...  

We performed a molecular and a comparative cytogenetic analysis on different Helicoidea species and a review of all the available chromosome data on the superfamily to provide an updated assessment of its karyological diversity. Standard karyotyping, banding techniques, and Fluorescence in situ hybridization of Nucleolus Organizer Region loci (NOR-FISH) were performed on fifteen species of three families: two Geomitridae, four Hygromiidae and nine Helicidae. The karyotypes of the studied species varied from 2n = 44 to 2n = 60, highlighting a high karyological diversity. NORs were on a single chromosome pair in Cernuella virgata and on multiple pairs in four Helicidae, representing ancestral and derived conditions, respectively. Heterochromatic C-bands were found on pericentromeric regions of few chromosomes, being Q- and 4′,6-diamidino-2-phenylindole (DAPI) negative. NOR-associated heterochromatin was C-banding and chromomycin A3 (CMA3) positive. Considering the available karyological evidence on Helicoidea and superimposing the chromosome data gathered from different sources on available phylogenetic inferences, we describe a karyotype of 2n = 60 with all biarmed elements as the ancestral state in the superfamily. From this condition, an accumulation of chromosome translocations led to karyotypes with a lower chromosome number (2n = 50–44). This process occurred independently in different lineages, while an augment of the chromosome number was detectable in Polygyridae. Chromosome inversions were also relevant chromosome rearrangements in Helicoidea, leading to the formation of telocentric elements in karyotypes with a relatively low chromosome count.


1999 ◽  
Vol 5 (2) ◽  
pp. 299-306
Author(s):  
N. A. Nazmy ◽  
S. M. Kotb ◽  
M. M. Mokhtar ◽  
S. R. Ismail

The study aimed to evaluate the role of nucleolus organizer region [NOR] heteromorphism as an etiological factor for parental nondisjunction in Down syndrome by comparing 25 patients affected by Down syndrome, and their parents with a control group of 80 non-affected Egyptians. All parents had normal karyotypes. The average modal number per parent of Ag-positive NORs was significantly higher in parents than controls. A significant difference in the size of the double-NOR variants [dNORs]was found. The mean maternal and paternal ages were significantly lower, with a significant increase in spontaneous abortions, for dNOR[+] couples compared with dNOR[-] couples


Genome ◽  
2014 ◽  
Vol 57 (11/12) ◽  
pp. 609-620 ◽  
Author(s):  
Radim J. Vašut ◽  
Kitty Vijverberg ◽  
Peter J. van Dijk ◽  
Hans de Jong

Apomixis in dandelions (Taraxacum: Asteraceae) is encoded by two unlinked dominant loci and a third yet undefined genetic factor: diplosporous omission of meiosis (DIPLOSPOROUS, DIP), parthenogenetic embryo development (PARTHENOGENESIS, PAR), and autonomous endosperm formation, respectively. In this study, we determined the chromosomal position of the DIP locus in Taraxacum by using fluorescent in situ hybridization (FISH) with bacterial artificial chromosomes (BACs) that genetically map within 1.2–0.2 cM of DIP. The BACs showed dispersed fluorescent signals, except for S4-BAC 83 that displayed strong unique signals as well. Under stringent blocking of repeats by C0t-DNA fragments, only a few fluorescent foci restricted to defined chromosome regions remained, including one on the nucleolus organizer region (NOR) chromosomes that contains the 45S rDNAs. FISH with S4-BAC 83 alone and optimal blocking showed discrete foci in the middle of the long arm of one of the NOR chromosomes only in triploid and tetraploid diplosporous dandelions, while signals in sexual diploids were lacking. This agrees with the genetic model of a single dose, dominant DIP allele, absent in sexuals. The length of the DIP region is estimated to cover a region of 1–10 Mb. FISH in various accessions of Taraxacum and the apomictic sister species Chondrilla juncea, confirmed the chromosomal position of DIP within Taraxacum but not outside the genus. Our results endorse that, compared to other model apomictic species, expressing either diplospory or apospory, the genome of Taraxacum shows a more similar and less diverged chromosome structure at the DIP locus. The different levels of allele sequence divergence at apomeiosis loci may reflect different terms of asexual reproduction. The association of apomeiosis loci with repetitiveness, dispersed repeats, and retrotransposons commonly observed in apomictic species may imply a functional role of these shared features in apomictic reproduction, as is discussed.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 617
Author(s):  
Álvaro S. Roco ◽  
Thomas Liehr ◽  
Adrián Ruiz-García ◽  
Kateryna Guzmán ◽  
Mónica Bullejos

Xenopus laevis and its diploid relative, Xenopus tropicalis, are the most used amphibian models. Their genomes have been sequenced, and they are emerging as model organisms for research into disease mechanisms. Despite the growing knowledge on their genomes based on data obtained from massive genome sequencing, basic research on repetitive sequences in these species is lacking. This study conducted a comparative analysis of repetitive sequences in X. laevis and X. tropicalis. Genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) with Cot DNA of both species revealed a conserved enrichment of repetitive sequences at the ends of the chromosomes in these Xenopus species. The repeated sequences located on the short arm of chromosome 3 from X. tropicalis were not related to the sequences on the short arm of chromosomes 3L and 3S from X. laevis, although these chromosomes were homoeologous, indicating that these regions evolved independently in these species. Furthermore, all the other repetitive sequences in X. tropicalis and X. laevis may be species-specific, as they were not revealed in cross-species hybridizations. Painting experiments in X. laevis with chromosome 7 from X. tropicalis revealed shared sequences with the short arm of chromosome 3L. These regions could be related by the presence of the nucleolus organizer region (NOR) in both chromosomes, although the region revealed by chromosome painting in the short arm of chromosome 3L in X. laevis did not correspond to 18S + 28S rDNA sequences, as they did not colocalize. The identification of these repeated sequences is of interest as they provide an explanation to some problems already described in the genome assemblies of these species. Furthermore, the distribution of repetitive DNA in the genomes of X. laevis and X. tropicalis might be a valuable marker to assist us in understanding the genome evolution in a group characterized by numerous polyploidization events coupled with hybridizations.


Sign in / Sign up

Export Citation Format

Share Document