The CPPDD-Associated ANKH M48T Mutation Interrupts the Interaction of ANKH with the Sodium/Phosphate Cotransporter PiT-1

2009 ◽  
Vol 36 (6) ◽  
pp. 1265-1272 ◽  
Author(s):  
JOHN WANG ◽  
HING WO TSUI ◽  
FRANK BEIER ◽  
FLORENCE W.L. TSUI

Objective.Numerous dominant human homolog of progressive ankylosis (ANKH) mutations have been identified in familial calcium pyrophosphate dihydrate crystal deposition disease (CPPDD). Due to the dominant nature of these mutations, we investigated whether ANKH interacts with other proteins; and if so, whether any CPPDD-associated ANKH mutation might disrupt such protein interactions.Methods.Stable ATDC5 ANKH wt- and ANKH M48T-transfectants were generated. Lysates from these transfectants were used to identify candidate protein interaction with ANKH by coimmunoprecipitation followed by Western blot analysis. The effect of high phosphate on the expression of genes involved in modulating Pi (inorganic phosphate)/PPi (inorganic pyrophosphate) homeostasis in these transfectants was assessed.Results.We showed that ANKH protein associates with the sodium/phosphate cotransporter PiT-1, and that ANKH M48T mutant protein failed to interact with PiT-1. We also showed that upon high phosphate treatment, the normally coordinated upregulation of endogenous Ank and PiT1 transcript expression was disrupted in ANKH M48T transfectants.ConclusionOur results suggested that there is a coordinated interrelationship between 2 key participants of Pi and PPi metabolism, ANKH and PiT-1.

2013 ◽  
Vol 41 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Miwa Uzuki ◽  
Takashi Sawai ◽  
Lawrence M. Ryan ◽  
Ann K. Rosenthal ◽  
Ikuko Masuda

Objective.Accumulation of excess extracellular inorganic pyrophosphate leads to calcium pyrophosphate dihydrate (CPPD) crystal formation in articular cartilage. CPPD crystal formation occurs near morphologically abnormal chondrocytes resembling hypertrophic chondrocytes. The ANK protein was recently implicated as an important factor in the transport of intracellular inorganic pyrophosphate across the cell membrane. We characterized ANK in joint tissues from patients with and without CPPD deposition and correlated the presence of ANK with markers of chondrocyte hypertrophy.Methods.Articular tissues were obtained from 24 patients with CPPD crystal deposition disease, 11 patients with osteoarthritis (OA) without crystals, and 6 controls. We determined the number of ANK–positive cells in joint tissues using immunohistochemistry and in situ hybridization, and correlated ANK positivity with markers of chondrocyte hypertrophy including Runx2, type X collagen, osteopontin (OPN), and osteocalcin (OCN).Results.ANK was detected in synoviocytes, chondrocytes, osteoblasts, and osteocytes. ANK was seen extracellularly only in the matrix of cartilage and meniscus. The number of ANK-positive cells was significantly higher in CPPD than in OA or normal joint tissues. The amount and intensity of ANK immunoreactivity reached maximum levels in the large chondrocytes around crystal deposits. ANK was similarly distributed to and significantly correlated with Runx2, type X collagen, OPN, and OCN.Conclusion.ANK levels were higher in articular tissues from patients with CPPD deposition. ANK was concentrated around crystal deposits and correlated with markers of chondrocyte hypertrophy. These findings support a role for ANK in CPPD crystal formation in cartilage.


Sign in / Sign up

Export Citation Format

Share Document