cppd crystal
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 4)

H-INDEX

9
(FIVE YEARS 0)

2020 ◽  
Vol 22 (1) ◽  
pp. 262
Author(s):  
Nobuyuki Onai ◽  
Chie Ogasawara

Calcium pyrophosphate dihydrate (CPPD) crystals are formed locally within the joints, leading to pseudogout. Although the mobilization of local granulocytes can be observed in joints where pseudogout has manifested, the mechanism of this activity remains poorly understood. In this study, CPPD crystals were administered to mice, and the dynamics of splenic and peripheral blood myeloid cells were analyzed. As a result, levels of both granulocytes and monocytes were found to increase following CPPD crystal administration in a concentration-dependent manner, with a concomitant decrease in lymphocytes in the peripheral blood. In contrast, the levels of other cells, such as dendritic cell subsets, T-cells, and B-cells, remained unchanged in the spleen, following CPPD crystal administration. Furthermore, an increase in granulocytes/monocyte progenitors (GMPs) and a decrease in megakaryocyte/erythrocyte progenitors (MEPs) were also observed in the bone marrow. In addition, CPPD administration induced production of IL-1β, which acts on hematopoietic stem cells and hematopoietic progenitors and promotes myeloid cell differentiation and expansion. These results suggest that CPPD crystals act as a “danger signal” to induce IL-1β production, resulting in changes in course of hematopoietic progenitor cell differentiation and in increased granulocyte/monocyte levels, and contributing to the development of gout.


2020 ◽  
pp. 105088
Author(s):  
Alexandre Dumusc ◽  
Borbala Pazar Maldonado ◽  
Charles Benaim ◽  
Pascal Zufferey ◽  
Bérengère Aubry-Rozier ◽  
...  

2013 ◽  
Vol 41 (1) ◽  
pp. 65-74 ◽  
Author(s):  
Miwa Uzuki ◽  
Takashi Sawai ◽  
Lawrence M. Ryan ◽  
Ann K. Rosenthal ◽  
Ikuko Masuda

Objective.Accumulation of excess extracellular inorganic pyrophosphate leads to calcium pyrophosphate dihydrate (CPPD) crystal formation in articular cartilage. CPPD crystal formation occurs near morphologically abnormal chondrocytes resembling hypertrophic chondrocytes. The ANK protein was recently implicated as an important factor in the transport of intracellular inorganic pyrophosphate across the cell membrane. We characterized ANK in joint tissues from patients with and without CPPD deposition and correlated the presence of ANK with markers of chondrocyte hypertrophy.Methods.Articular tissues were obtained from 24 patients with CPPD crystal deposition disease, 11 patients with osteoarthritis (OA) without crystals, and 6 controls. We determined the number of ANK–positive cells in joint tissues using immunohistochemistry and in situ hybridization, and correlated ANK positivity with markers of chondrocyte hypertrophy including Runx2, type X collagen, osteopontin (OPN), and osteocalcin (OCN).Results.ANK was detected in synoviocytes, chondrocytes, osteoblasts, and osteocytes. ANK was seen extracellularly only in the matrix of cartilage and meniscus. The number of ANK-positive cells was significantly higher in CPPD than in OA or normal joint tissues. The amount and intensity of ANK immunoreactivity reached maximum levels in the large chondrocytes around crystal deposits. ANK was similarly distributed to and significantly correlated with Runx2, type X collagen, OPN, and OCN.Conclusion.ANK levels were higher in articular tissues from patients with CPPD deposition. ANK was concentrated around crystal deposits and correlated with markers of chondrocyte hypertrophy. These findings support a role for ANK in CPPD crystal formation in cartilage.


2010 ◽  
Vol 17 (4) ◽  
pp. 412 ◽  
Author(s):  
Jae Shik Jeong ◽  
Tae Wook Kim ◽  
Min Jeong Jeong ◽  
Jun Young Im ◽  
Mi Ran Park ◽  
...  

2009 ◽  
Vol 36 (12) ◽  
pp. 2758-2765 ◽  
Author(s):  
JOVIL V.A. KANNAMPUZHA ◽  
JINDRA H. TUPY ◽  
KENNETH P.H. PRITZKER

Objective.The enzymatic activities of tissue-nonspecific alkaline phosphatase (TNAP) including capacity to inhibit calcium pyrophosphate dihydrate (CPPD) crystal dissolution are known to be inhibited by endogenous amino acids, notably cysteine. As cysteine is recognized as a strong TNAP inhibitor, we investigated whether cysteine-related metabolites such as mercaptopyruvate (MPA) could show similar enzyme inhibition effects and, if so, whether these effects might be synergistic with cysteine at approximate physiologic concentrations of the amino acids.Methods.We studied the inhibitory effects of MPA as well as MPA and cysteine combined in equimolar concentrations on TNAP’s phosphatase, inorganic pyrophosphatase, and CPPD crystal dissolution activities. Kinetic parameters Vmax, KM, concentration for 50% inhibition (I50), inhibitor constant (KI), and specific activities calculated from initial velocity, Eadie-Hofstee, Simple, Dixon, and secondary plots were used to assess enzyme inhibition.Results.MPA significantly inhibited TNAP’s phosphatase and pyrophosphatase activities at 10× and 100× physiological concentrations. In the presence of calcium [Ca2+] and [Mg2+] = 1 mM, MPA inhibited uncompetitively TNAP’s phosphatase activity and inhibited noncompetitively its pyrophosphatase activity. CPPD crystal dissolution activity was also inhibited. Cysteine and MPA together in equimolar concentrations inhibited TNAP enzyme activities and CPPD crystal dissolution much more effectively than MPA or cysteine alone, reducing CPPD dissolution to 38% of controls at approximate physiologic inhibitor concentrations.Conclusion.Endogenous amino acids like cysteine and its derivative MPA have the capacity to inhibit TNAP activities at physiologic concentrations. Downregulation of their inhibiting concentration in the cartilage interstitial fluid environment may provide a therapeutic avenue to controlled dissolution of CPPD crystal deposition in tissues.


Sign in / Sign up

Export Citation Format

Share Document