inorganic pyrophosphate
Recently Published Documents


TOTAL DOCUMENTS

416
(FIVE YEARS 43)

H-INDEX

47
(FIVE YEARS 3)

2021 ◽  
Vol 10 (23) ◽  
pp. 5676
Author(s):  
Symeon Tournis ◽  
Maria P. Yavropoulou ◽  
Stergios A. Polyzos ◽  
Artemis Doulgeraki

Hypophosphatasia (HPP) is an inherited metabolic disease caused by loss-of-function mutations in the tissue non-specific alkaline phosphatase (TNAP) gene. Reduced activity of TNAP leads to the accumulation of its substrates, mainly inorganic pyrophosphate and pyridoxal-5΄-phosphate, metabolic aberrations that largely explain the musculoskeletal and systemic features of the disease. More than 400 ALPL mutations, mostly missense, are reported to date, transmitted by either autosomal dominant or recessive mode. Severe disease is rare, with incidence ranging from 1:100,000 to 1:300,000 live births, while the estimated prevalence of the less severe adult form is estimated to be between 1:3100 to 1:508, in different countries in Europe. Presentation largely varies, ranging from death in utero to asymptomatic adults. In infants and children, clinical features include skeletal, respiratory and neurologic complications, while recurrent, poorly healing fractures, muscle weakness and arthropathy are common in adults. Persistently low serum alkaline phosphatase is the cardinal biochemical feature of the disease. Management requires a dedicated multidisciplinary team. In mild cases, treatment is usually symptomatic. Severe cases, with life-threating or debilitating complications, can be successfully treated with enzyme replacement therapy with asfotase alfa.


Author(s):  
Cui Guo ◽  
Xiaoqiang Liu ◽  
Yimin Xu ◽  
Xinyue Han ◽  
Runnan Xie ◽  
...  

Background: Canmei formula (CMF) is a traditional Chinese medicine compound with definite effect on the prevention and treatment of colorectal adenoma (CRA). CMF can prevent the transformation of intestinal inflammation to cancer. This study explored the mechanism of action of CMF in anti-CRA using multi-omics techniques.Method: The mice were randomly divided into four groups: blank group (Control), high-fat diet (HFD) + AOM/DSS colorectal adenoma model (ADH) groups, Canmei formula treatment group (ADH-CMF) and sulfasalazine treatment group (Sul). Except for the blank group, ADH model was established in the other three groups by intraperitoneal injection with AOM reagent, and then mice were given 2.5% DSS in free drinking water and high-fat diet. The mice in the blank group and ADH groups were intragastrically perfused with normal saline, and the mice in the other two groups were treated with corresponding drugs for 20 weeks. During this period, the changes of physical signs of mice in each group were observed. The differentially expressed genes and proteins in the Control group, ADH group and ADH-CMF group were detected by RNA-seq transcriptome sequencing and Tandem Mass Tags (TMT) quantitative proteomics. After the combined analysis and verification, the key targets were analyzed by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Moreover, the changes of intestinal flora in mice of the three groups were examined.Results: A total of 2,548 differential genes were obtained by transcriptomics analysis, and 45 differential proteins were obtained by proteomics analysis. The results of proteomics data and experimental verification showed that CMF mainly affected the Phospholysine Phosphohistidine Inorganic Pyrophosphate Phosphatase (LHPP) target. GO analysis showed that the targets of CMF were involved in the biological processes such as cellular process, metabolic process and biological regulation. KEGG analysis showed that those genes were involved in oxidative phosphorylation, cell senescence, and metabolic pathways. Studies have shown that LHPP overexpression impeded colorectal cancer cell growth and proliferation in vitro, and was associated with a change in PI3K/AKT activity. The results of 16S DNA high-throughput sequencing showed that CMF could effectively regulate the abundance of Bifidobacterium, Candidatus_Saccharimonas and Erysipelatoclostridium in the intestinal flora at the genus level.Conclusion: CMF regulates LHPP via the PI3K/AKT signaling pathway. CMF affects the abundance of specific intestinal flora and can regulate the disorder of intestinal flora to achieve the role of prevention and treatment of CRA.


2021 ◽  
Author(s):  
Eszter Kozák ◽  
Krisztina Fülöp ◽  
Natália Tőkési ◽  
Nidhi Rao ◽  
Qiaoli Li ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Bin Hou ◽  
Wenhan Li ◽  
Peng Xia ◽  
Fengyu Zhao ◽  
Zhao Liu ◽  
...  

AbstractThe roles of phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) in tumorigenesis have been recently proven in hepatocellular carcinoma (HCC), cervical, pancreatic, bladder, and thyroid cancers. Previous research demonstrated that LHPP repressed cell proliferation and growth by inactivating the phosphatidylinositol 3-kinase/AKT signaling pathway in vitro and in vivo. However, the functions and potential mechanisms of LHPP as a tumor suppressor in colorectal cancer (CRC) metastasis are still unknown. Consequently, the Transwell assay and xenograft nude model showed that LHPP inhibited migration and invasion of CRC cells in vitro and in vivo, respectively. The expression of total and nuclear epithelial-to-mesenchymal transition (EMT)-related proteins were significantly reduced after LHPP upregulation. Human Gene Expression Array and IPA (Ingenuity Pathway Analysis) commercial software were applied to identify differentially expressed genes (DEGs) and potential cell signaling pathways. A total of 330 different genes were observed, including 177 upregulated genes and 153 downregulated genes. Bioinformatics analysis suggested that the transforming growth factor-β (TGF-β) signaling pathway was highly inactivated in this study. Then, Smad3 phosphorylation was apparently decreased, whereas Smad7 expression was markedly enhanced after upregulating LHPP expression. These results were proven once again after TGF-β1 stimulation. Furthermore, a specific inhibitor of Smad3 phosphorylation (SIS3) was applied to verify that LHPP repressed EMT of cancer cells by attenuating TGF-β/Smad signaling. The results suggested that suppression of the TGF-β/Smad signaling pathway by LHPP overexpression could be abolished by SIS3.


2021 ◽  
Vol 22 (19) ◽  
pp. 10470
Author(s):  
Anne Briolay ◽  
Laurence Bessueille ◽  
David Magne

Tissue-nonspecific alkaline phosphatase (TNAP) is mainly known for its necessary role in skeletal and dental mineralization, which relies on the hydrolysis of the mineralization inhibitor inorganic pyrophosphate (PPi). Mutations in the gene encoding TNAP leading to severe hypophosphatasia result in strongly reduced mineralization and perinatal death. Fortunately, the relatively recent development of a recombinant TNAP with a bone anchor has allowed to correct the bone defects and prolong the life of affected babies and children. Researches on TNAP must however not be slowed down, because accumulating evidence indicates that TNAP activation in individuals with metabolic syndrome (MetS) is associated with enhanced cardiovascular mortality, presumably in relation with cardiovascular calcification. On the other hand, TNAP appears to be necessary to prevent the development of steatohepatitis in mice, suggesting that TNAP plays protective roles. The aim of the present review is to highlight the known or suspected functions of TNAP in energy metabolism that may be associated with the development of MetS. The location of TNAP in liver and its function in bile excretion, lipopolysaccharide (LPS) detoxification and fatty acid transport will be presented. The expression and function of TNAP in adipocyte differentiation and thermogenesis will also be discussed. Given that TNAP is a tissue- and substrate-nonspecific phosphatase, we believe that it exerts several crucial pathophysiological functions that are just beginning to be discovered.


Author(s):  
Corinna Melanie Held ◽  
Anic Guebelin ◽  
Andreas Krebs ◽  
Jörn Oliver Sass ◽  
Michael Wurm ◽  
...  

Abstract Objectives Patients with childhood hypophosphatasia (HPP) often have unspecific symptoms. It was our aim to identify patients with mild forms of HPP by laboratory data screening for decreased alkaline phosphatase (AP) within a pediatric population. Methods We conducted a retrospective hospital-based data screening for AP activity below the following limits: Girls: ≤12 years: <125 U/L; >12 years: <50 U/L Boys: ≤14 years: <125 U/L; >14 years: <70 U/L. Screening positive patients with otherwise unexplained hypophosphatasemia were invited for further diagnostics: Re-test of AP activity, pyridoxal 5′-phosphate (PLP) in hemolyzed whole blood, phosphoethanolamine (PEA) in serum and urine, and inorganic pyrophosphate in urine. Sequencing of the ALPL gene was performed in patients with clinical and/or laboratory abnormalities suspicious for HPP. Results We assessed a total of 14,913 samples of 6,731 patients and identified 393 screening-positive patients. The majority of patients were excluded due to known underlying diseases causing AP depression. Of the 30 patients who participated in the study, three had a decrease in AP activity in combination with an increase in PLP and PEA. A heterozygous ALPL mutation was detected in each of them: One patient with a short stature was diagnosed with childhood-HPP and started with enzyme replacement therapy. The remaining two are considered as mutation carriers without osseous manifestation of the disease. Conclusions A diagnostic algorithm based on decreased AP is able to identify patients with ALPL mutation after exclusion of the differential diagnoses of hypophosphatasemia and with additional evidence of increased AP substrates.


Author(s):  
Eva Bernhard ◽  
Yvonne Nitschke ◽  
Gus Khursigara ◽  
Yves Sabbagh ◽  
Yongbao Wang ◽  
...  

Abstract Purpose Generalized arterial calcification of infancy, pseudoxanthoma elasticum, autosomal recessive hypophosphatemic rickets type 2, and hypophosphatasia are rare inherited disorders associated with altered plasma levels of inorganic pyrophosphate (PPi). In this study, we aimed to establish a reference range for plasma PPi in the pediatric population, which would be essential to support its use as a biomarker in children with mineralization disorders. Methods Plasma samples were collected from 200 children aged 1 day to 18 years who underwent blood testing for medical conditions not affecting plasma PPi levels. PPi was measured in proband plasma utilizing a validated adenosine triphosphate (ATP) sulfurylase method. Results The analytical sensitivity of the ATP sulfurylase assay consisted of 0.15 to 10 µM PPi. Inter- and intra-assay coefficients of variability on identical samples were below 10%. The standard range of PPi in the blood plasma of children and adolescents aged 0 to 18 years was calculated as 2.36 to 4.44 µM, with a median of 3.17 µM, with no difference between male and female probands. PPi plasma levels did not differ significantly in different pediatric age groups. Main Conclusions Our results yielded no noteworthy discrepancy to the reported standard range of plasma PPi in adults (2-5 µM). We propose the described ATP sulfurylase method as a diagnostic tool to measure PPi levels in plasma as a biomarker in the pediatric population.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xu Chao ◽  
Wei Zhang ◽  
Jieqiong Wu ◽  
Xuesong Feng ◽  
Hailong Shi ◽  
...  

Background. Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) serves as a tumor suppressor in hepatocellular carcinoma (HCC), but the correlation between the expression of LHPP and the clinical parameters of oncogenic progression is still not well defined. This study is to reveal the correlation between the expression of LHPP in HCC and their clinical parameters. Methods. Immunohistochemical analysis was used to assess the correlation between the expression of LHPP and the clinical parameters of HCC. Expressions of LHPP in HCC tissues and cultured HCC cells were detected by Western blot and quantitative real-time polymerase chain reaction (qRT-PCR). LHPP, gamma-glutamyl transferase (GGT), and α-fetoprotein (AFP) expression levels in blood or HCC tissues were detected by enzyme-linked immunosorbent assay (ELISA). The Spearman rank correlation coefficient was used to evaluate the correlation of the expression of LHPP and the clinical index of HCC. Correlation of survival and expression of LHPP were analyzed using the Kaplan-Meier method and the log-rank test. Results. Expressions of LHPP in HCC tissues were significantly downregulated than their paired adjacent normal tissues. A significant positive correlation was found between the cytoplasm and nuclear expression of LHPP in both HCC and their paired adjacent normal tissues. The expression of LHPP negatively correlated with the levels of GGT in the cytoplasm of adjacent tissues and with the AFP level in the nucleus of HCC cells. Relative levels of LHPP in HCC tissues were markedly lower than those of the paired adjacent normal tissues. Relative levels of LHPP in LO-2 cells were higher than those of HepG2, BEL-7404, and SMMC-7721 cell lines. The overall survival and DSF survival of patients with the high expression of LHPP were much higher than those with the low expression of LHPP in paired adjacent normal tissue. Conclusions. LHPP is associated with the AFP level and acts as a good prognostic factor in HCC.


Author(s):  
Qun-Feng Wu ◽  
Wei-Si Wang ◽  
Shen-Bo Chen ◽  
Bin Xu ◽  
Yong-Dong Li ◽  
...  

Soluble inorganic pyrophosphatases (PPases) are essential for facilitating the growth and development of organisms, making them attractive functional proteins. To provide insight into the molecular basis of PPases in Schistosoma japonicum (SjPPase), we expressed the recombinant SjPPase, analyzed the hydrolysis mechanism of inorganic pyrophosphate (PPi), and measured its activity. Moreover, we solved the crystal structure of SjPPase in complex with orthophosphate (Pi) and performed PPi and methylene diphosphonic acid (MDP) docking into the active site. Our results suggest that the SjPPase possesses PPi hydrolysis activity, and the activity declines with increased MDP or NaF concentration. However, the enzyme shows unexpected substrate inhibition properties. Through PPi metabolic pathway analysis, the physiological action of substrate inhibition might be energy saving, adaptably cytoprotective, and biosynthetic rate regulating. Furthermore, the structure of apo-SjPPase and SjPPase with Pi has been solved at 2.6 and 2.3 Å, respectively. The docking of PPi into the active site of the SjPPase-Pi complex revealed that substrate inhibition might result from blocking Pi exit due to excess PPi in the SjPPase-Pi complex of the catalytic cycle. Our results revealed the structural features of apo-SjPPase and the SjPPase-Pi complex by X-ray crystallography, providing novel insights into the physiological functions of PPase in S. japonicum without the PPi transporter and the mechanism of its substrate inhibition.


Sign in / Sign up

Export Citation Format

Share Document