chondrocyte hypertrophy
Recently Published Documents


TOTAL DOCUMENTS

184
(FIVE YEARS 44)

H-INDEX

35
(FIVE YEARS 4)

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Xiaodong Gu ◽  
Fei Li ◽  
Yangyang Gao ◽  
Xianda Che ◽  
Pengcui Li

Abstract Background The aim of this study was to evaluate whether histone deacetylase 4 S246/467/632A mutant (m-HDAC4) has enhanced function at histone deacetylase 4 (HDAC4) to attenuate cartilage degeneration in a rat model of osteoarthritis (OA). Methods Chondrocytes were infected with Ad-m-HDAC4-GFP or Ad-HDAC4-GFP for 24 h, incubated with interleukin-1β (IL-1β 10 ng/mL) for 24 h, and then measured by RT-qPCR. Male Sprague-Dawley rats (n = 48) were randomly divided into four groups and transduced with different vectors: ACLT/Ad-GFP, ACLT/Ad-HDAC4-GFP, ACLT/Ad-m-HDAC4-GFP, and sham/Ad-GFP. All rats received intra-articular injections 48 h after the operation and every 3 weeks thereafter. Cartilage damage was assessed using radiography and Safranin O staining and quantified using the OARSI score. The hypertrophic and anabolic molecules were detected by immunohistochemistry and RT-qPCR. Results M-HDAC4 decreased the expression levels of Runx-2, Mmp-13, and Col 10a1, but increased the levels of Col 2a1 and ACAN more effectively than HDAC4 in the IL-1β-induced chondrocyte OA model; upregulation of HDAC4 and m-HDAC4 in the rat OA model suppressed Runx-2 and MMP-13 production, and enhanced Col 2a1 and ACAN synthesis. Stronger Safranin O staining was detected in rats treated with m-HDAC4 than in those treated with HDAC4. The resulting OARSI scores were lower in the Ad-m-HDAC4 group (5.80 ± 0.45) than in the Ad-HDAC4 group (9.67 ± 1.83, P = 0.045). The OARSI scores were highest in rat knees that underwent ACLT treated with Ad-GFP control adenovirus vector (14.93 ± 2.14, P = 0.019 compared with Ad-HDAC4 group; P = 0.003 compared with Ad-m-HDAC4 group). Lower Runx-2 and MMP-13 production, and stronger Col 2a1 and ACAN synthesis were detected in rats treated with m-HDAC4 than in those treated with HDAC4. Conclusions M-HDAC4 repressed chondrocyte hypertrophy and induced chondrocyte anabolism in the nucleus. M-HDAC4 was more effective in attenuating articular cartilage damage than HDAC4.


2021 ◽  
Vol 14 (12) ◽  
pp. 1337
Author(s):  
Akhtar Ali ◽  
YoungJoon Park ◽  
Jeonghoon Lee ◽  
Hyo-Jin An ◽  
Jong-Sik Jin ◽  
...  

Osteoarthritis (OA) is a common degenerative joint disorder that affects joint function, mobility, and pain. The release of proinflammatory cytokines stimulates matrix metalloproteinases (MMPs) and aggrecanase production which further induces articular cartilage degradation. Hypertrophy-like changes in chondrocytes are considered to be an important feature of OA pathogenesis. A Glycyrrhiza new variety, Wongam (WG), was developed by the Korea Rural Development Administration to enhance the cultivation and quality of Glycyrrhizae Radix et Rhizoma (licorice). This study examined the regulatory effect of WG against hypertrophy-like changes such as RUNX2, Collagen X, VEGFA, MMP-13 induction, and Collagen II reduction induced by IL-1β in SW1353 human chondrocytes. Additionally, in silico methods were performed to identify active compounds in licorice to target chondrocyte hypertrophy-related proteins. WG showed inhibitory effects against IL-1β-induced chondrocyte hypertrophy by regulating both HDAC4 activation via the PTH1R/PKA/PP2A pathway and the SOX9/β-catenin signaling pathway. In silico analysis demonstrated that 21 active compounds from licorice have binding potential with 11 targets related to chondrocyte hypertrophy. Further molecular docking analysis and in vivo studies elicited four compounds. Based on HPLC, isoliquiritigenin and its precursors were identified and quantified. Taken together, WG is a potential therapeutic agent for chondrocyte hypertrophy-like changes in OA.


2021 ◽  
Author(s):  
Ana Lamuedra ◽  
Paula Gratal ◽  
Lucía Calatrava ◽  
Víctor Luis Ruiz-Perez ◽  
Adrián Palencia-Campos ◽  
...  

Chondrocytes in osteoarthritic (OA) cartilage acquire a hypertrophic-like phenotype, where Hedgehog (Hh) signaling is pivotal. Hh overexpression causes OA-like cartilage lesions, whereas its downregulation prevents articular destruction. Since Evc deletion hampers Hh signaling we aimed to study whether Evc deletion restrains chondrocyte hypertrophy and prevents joint damage in an EvccKO model of OA. OA was induced by surgical knee destabilization in wild-type and EvccKO adult mice. Hypertrophic markers and Hh genes were measured by qRT-PCR, and metalloproteinases levels by western blot. Human OA chondrocytes and cartilage were obtained from patients undergoing knee joint replacement. Tamoxifen induced inactivation of Evc inhibited Hh overexpression and partially prevented chondrocyte hypertrophy during OA, although it did not ameliorate cartilage damage in DMM-EvccKO mice. Hh pathway inhibition did not modify the expression of proinflammatory mediators in human OA chondrocytes. Hypertrophic and inflammatory markers co-localized in OA cartilage. Tamoxifen induced inactivation of Evc partially prevented chondrocyte hypertrophy in DMM-EvccKO mice, but it did not ameliorate cartilage damage. Our results suggest that chondrocyte hypertrophy per se is not a pathogenic event in the progression of OA.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Sunghyun Park ◽  
Yoshie Arai ◽  
Alvin Bello ◽  
Hansoo Park ◽  
Dohyun Kim ◽  
...  

AbstractOsteoarthritis (OA) causes serious changes in the metabolic and signaling pathways of chondrocytes, including the mitogen-activated protein kinase (MAPK) pathway. However, the role of sprouty RTK signaling antagonist 4 (SPRY4), an inhibitor of MAPK, in the human cartilage tissues and chondrocytes remains to be understood. Here, using SPRY4 gene delivery into healthy and degenerated chondrocytes, we elucidated the role of SPRY4 in preventing chondrocyte hypertrophy. In addition to using the human cartilage tissues with the destabilization of the medial meniscus (DMM) model in Sprague-Dawley (SD) rats, the role of SPRY4 in cartilage tissues and chondrocytes was explored through their molecular and histological analyses. In order to determine the effects of SPRY4 on healthy human chondrocyte hypertrophy, small interfering RNA (siRNA) was used to knock down SPRY4. Lentiviral transduction of SPRY4 into degenerated human chondrocytes allowed us to investigate its ability to prevent hypertrophy. SPRY4 expression levels were higher in healthy human cartilage tissue and chondrocytes than in degenerated human cartilage tissues and hypertrophy-induced chondrocytes. The knockdown of SPRY4 in healthy chondrocytes caused an increase in hypertrophy, senescence, reactive oxygen species (ROS) production, and extracellular matrix (ECM) protease expression. However, all these factors decreased upon overexpression of SPRY4 in degenerated chondrocytes via regulation of the MAPK signaling pathway. We conclude that SPRY4 is a crucial indicator of osteoarthritis (OA) severity and could play an important role in preventing OA in the cartilage by inhibiting chondrocyte hypertrophy.


2021 ◽  
Author(s):  
Amaya Garcia de Vinuesa ◽  
Gonzalo Sanchez‐Duffhues ◽  
Esmeralda Blaney‐Davidson ◽  
Arjan Caam ◽  
Kirsten Lodder ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1139
Author(s):  
Sunghyun Park ◽  
Alvin Bello ◽  
Yoshie Arai ◽  
Jinsung Ahn ◽  
Dohyun Kim ◽  
...  

Chondrocyte hypertrophy is one of the key indicators in the progression of osteoarthritis (OA). However, compared with other OA indications, such as cartilage collapse, sclerosis, inflammation, and protease activation, the mechanisms by which chondrocyte hypertrophy contributes to OA remain elusive. As the pathological processes in the OA cartilage microenvironment, such as the alterations in the extracellular matrix, are initiated and dictated by the physiological state of the chondrocytes, in-depth knowledge of chondrocyte hypertrophy is necessary to enhance our understanding of the disease pathology and develop therapeutic agents. Chondrocyte hypertrophy is a factor that induces OA progression; it is also a crucial factor in the endochondral ossification. This review elaborates on this dual functionality of chondrocyte hypertrophy in OA progression and endochondral ossification through a description of the characteristics of various genes and signaling, their mechanism, and their distinguishable physiological effects. Chondrocyte hypertrophy in OA progression leads to a decrease in chondrogenic genes and destruction of cartilage tissue. However, in endochondral ossification, it represents an intermediate stage at the process of differentiation of chondrocytes into osteogenic cells. In addition, this review describes the current therapeutic strategies and their mechanisms, involving genes, proteins, cytokines, small molecules, three-dimensional environments, or exosomes, against the OA induced by chondrocyte hypertrophy. Finally, this review proposes that the contrasting roles of chondrocyte hypertrophy are essential for both OA progression and endochondral ossification, and that this cellular process may be targeted to develop OA therapeutics.


Author(s):  
Mauricio N. Ferrao Blanco ◽  
Heura Domenech Garcia ◽  
Laurence Legeai-Mallet ◽  
Gerjo J.V.M. van Osch

Cartilage ◽  
2021 ◽  
pp. 194760352110219
Author(s):  
Mauricio N. Ferrao Blanco ◽  
Yvonne M. Bastiaansen-Jenniskens ◽  
Mark G. Chambers ◽  
Andrew A. Pitsillides ◽  
Roberto Narcisi ◽  
...  

Objective In osteoarthritis, chondrocytes tend to acquire a hypertrophic phenotype, which contributes to the modification of the extracellular matrix, resulting in permanent cartilage changes. In mouse chondrocytes, pro-inflammatory macrophages and pro-inflammatory cytokines have been shown to stimulate hypertrophy via the activation of the nuclear factor kappa B (NF-κB) pathway. Whether or not this also occurs in human chondrocytes remains unclear. We therefore aimed to investigate whether hypertrophy-like responses in human cartilage are driven mainly by intrinsic inflammatory signaling or shaped by specific macrophage populations. Design Human articular chondrocytes were cultured with pro-inflammatory cytokines or medium conditioned by defined macrophage subsets. Furthermore, the effect of inhibition of NF-κB-dependent gene expression was evaluated using the NF-κB inhibitor SC-514. Hypertrophy was assessed by measuring the transcription level of alkaline phosphatase ( ALPL), type X collagen ( COL10A1), Indian hedgehog ( IHH), and runt-related transcription factor 2 ( RUNX2). Results The expression of hypertrophic genes was not promoted in human chondrocytes by pro-inflammatory cytokines neither pro-inflammatory M(IFNγ + TNFα) macrophages. Inhibition of the NF-κB-dependent gene expression did not affect human articular chondrocyte hypertrophy. However, tissue repair M(IL4) macrophages induced hypertrophy by promoting the expression of COL10A1, RUNX2, and IHH. Conclusion Intrinsic inflammatory signaling activation is not involved in the hypertrophic shift observed in human articular chondrocytes cultured in vitro. However, tissue repair macrophages may contribute to the onset of this detrimental phenotype in human osteoarthritic cartilage, given the effect observed in our experimental models.


Sign in / Sign up

Export Citation Format

Share Document