Online model and actuator fault tolerant control for autonomous mobile robot

2007 ◽  
Vol 20 (03) ◽  
pp. 29 ◽  
Author(s):  
Qi SONG
Author(s):  
Parisa Yazdjerdi ◽  
Nader Meskin

In this article, an actuator fault-tolerant control scheme is proposed for differential-drive mobile robots based on the concept of multiple-model approach. The nonlinear kinematic model of the differential-drive mobile robot is discretized and a bank of extended Kalman filters is designed to detect, isolate, and identify actuator faults. A fault-tolerant controller is then developed based on the detected fault to accommodate its effect on the trajectory-tracking performance of the mobile robot. Extensive experimental results are presented to demonstrate the efficacy of the proposed fault-tolerant control approach.


2015 ◽  
Vol 30 (2) ◽  
pp. 375-392 ◽  
Author(s):  
Marcin Witczak ◽  
Mariusz Buciakowski ◽  
Christophe Aubrun

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Liang Zheng ◽  
Xuelian Dong ◽  
Qian Luo ◽  
Menglan Zeng ◽  
Xinping Yang ◽  
...  

In this paper, an adaptive sliding mode fault tolerant control (ASMFTC) approach is proposed for a class of nonlinear systems with actuator fault, uncertainty, and external disturbance. Specifically, first, a novel observer is proposed to estimate the state, actuator fault, and external disturbance. Then, by utilising the observed information, a novel output sliding mode observer is constructed. In the control method, an adaptive law and two compensators are designed to attenuate the unknown estimation errors, actuator fault, and disturbance. Furthermore, the reaching ability of the sliding motion is analysed and the H-infinite performance is introduced to ensure the robustness of the system. Finally, a flexible single joint manipulator system and a two-cart system are used to verify the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document