scholarly journals Site index conversion equations for mixed stands of Scots pine (Pinus sylvestris L.) and Oriental beech (Fagus orientalis Lipsky) in Black Sea Region, TURKEY

Author(s):  
AYDIN KAHRİMAN
Biologia ◽  
2012 ◽  
Vol 67 (3) ◽  
Author(s):  
Ali Kavgaci ◽  
Münevver Arslan ◽  
Ümit Bingöl ◽  
Neslihan Erdoğan ◽  
Andraž Čarni

AbstractFloristic differentiation of the oriental beech (Fagus orientalis Lipsky) forests in Turkey and Bulgaria was investigated and the role of geographical and topographical factors in this differentiation was assessed. After geographical and ecological stratification of the available 922 relevés, 288 remained. Classification, by applying cluster analysis, resulted in seven vegetation units defined by species composition which represent the geographical and ecological variation of Fagus orientalis forests. DCA ordination was applied to these units by passively projecting their chorological structure, as supplementary variables. For more detailed interpretation of vegetation types with similar geographic distribution patterns, PCA was applied by passively projecting the chorological elements, life-forms and topographical factors as supplementary variables. Seven vegetation units representing the geographical and ecological variety of Fagus orientalis forests were described. Four vegetation units represent the core area of Fagus orientalis distribution on the western and middle coast of the Black Sea region (Euxine region); the remaining three types represent the distribution in the eastern Black Sea region (Colchic region), the distribution in western and southern Anatolia under the influence of the Mediterranean climate and the distribution in the transitional zone from the Euxine region to the continental parts of Inner Anatolia, respectively. The four vegetation types in Euxine region reflect the decreasing effect of Black Sea towards Inner Anatolia, as well as altitudinal differences, except the forest type representing forests on calcareous sites. The other three vegetation units represent ravine, lowland to montane and altimontane forests in Euxine region. Fagus orientalis forests could be distinguished by their floristic composition, their chorological elements and life-forms spectra, which reflect a geographical and ecological gradients.


Author(s):  
Murat SARGINCI ◽  
Oktay YILDIZ ◽  
Doğanay TOLUNAY ◽  
Bülent TOPRAK ◽  
Şule TEMÜR

This study aimed to estimate leaf litter decomposition rates in eastern beech (Fagus orientalis Lipsky) and sweet chestnut (Castanea sativa Mill.) mixed stands in Düzce-Akçakoca, located in the Western Black Sea Region of Turkey. The sampling areas represent four different elevations and two aspects at each elevation. Amounts of annual beech and chestnut litter fall were estimated as 5.19 Mg ha-1 and 4.61 Mg ha-1, respectively. Litter decomposition was examined over five time periods (0.25, 0.50, 1.25, 2.25, and 4.25 years) by using the litter bag method. The amount of remaining beech leaf litter mass was found to be 1.1, 1.2, 1.2, 1.4, and 1.3 times greater than the amount of chestnut leaf litter, respectively. However, estimated values for the decomposition rate-constant (k) of chestnut for all time periods were found to be approximately 1.5 times greater than those of beech leaf litter. Litter in beech stands decomposed more rapidly at higher elevations during the first year, but at lower elevations in the second year, likely due to increased temperature and precipitation for the corresponding years. Leaf litter in chestnut stands decomposed more rapidly at lower elevations in the second and fourth year, reflecting higher precipitation of those years.


Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 603
Author(s):  
Zdeněk Vacek ◽  
Stanislav Vacek ◽  
Derya Eşen ◽  
Oktay Yildiz ◽  
Jan Král ◽  
...  

Biological invasions threaten global biodiversity and forest ecosystems; therefore, it is necessary to use appropriate strategies for combating the spread of invasive species. Natural regeneration of eastern beech (Fagus orientalis Lipsky) is considerably limited by an aggressive invasive shrub, pontic rhododendron (Rhododendron ponticum L.), in the Black Sea Region of Turkey. Therefore, the future character of the region’s forests is uncertain. The aim of this research was to evaluate the structure of beech forests with different management regimes of rhododedron and to determine the interaction among tree layer, rhododendron cover, and natural regeneration in Düzce Province using the FieldMap technology. The following variants of forests were compared: without intervention (control) and three and six years after rhododendron clearance. The results showed that tree density ranged between 175–381 trees ha−1 and stand volume between 331–589 m3 ha−1. The horizontal structure of the tree layer was mostly random, and the spatial pattern of natural regeneration was aggregated. Recruit density and height in the beech stands were significantly differentiated due to the influence of presence or absence of invasive rhododendron. Rhododendron cover ranged between 81%–97%, and woody stems amounted to 72,178–86,884 ha−1 in unmanaged forests. Canopy in the overstory did not have a significant effect on the density of regeneration and rhododendron cover. Tree layer had a significant negative influence on natural regeneration within a 4 m radius on the plots without rhododendron. However, on the plots with dense rhododendron cover, tree layer had a positive influence on regeneration within a 1.5 m radius. Natural regeneration density was significantly higher when rhododendron was cleared than the plots without intervention. On the plots without woody clearance, there was an insufficient regeneration (113–619 recruits ha−1); however, they had higher mean height compared to the sites without rhododendron. After three and six years of rhododendron clearance, the numbers of recruits in natural regeneration were 63,981 ha−1 and 105,075 ha−1, respectively. In conclusion, invasive spread of rhododendron was a limiting factor of the prosperous regeneration and tree species diversity, and manual clearance of rhododendron is recommended in managed beech forests of the study region.


2015 ◽  
Vol 73 (2) ◽  
pp. 371-380 ◽  
Author(s):  
Maryam Salehi ◽  
Ghavamudin Zahedi Amiri ◽  
Pedram Attarod ◽  
Ali Salehi ◽  
Ivano Brunner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document