slope position
Recently Published Documents


TOTAL DOCUMENTS

252
(FIVE YEARS 83)

H-INDEX

28
(FIVE YEARS 4)

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 118
Author(s):  
Simone Vongkhamho ◽  
Akihiro Imaya ◽  
Kazukiyo Yamamoto ◽  
Chisato Takenaka ◽  
Hiroyuki Yamamoto

Teak is a globally valuable hardwood tree species, as its growth performance is important for timber productivity. The purpose of this study was to establish an effective management system for teak plantations in the Lao PDR. Using diameter at breast height (DBH) and height growth as significant indicators of growth performance, we investigated the relationship between tree growth curve parameters of teak and topographic conditions. Stem analysis data for 81 sample trees (three trees selected in canopy trees with predominant height in each plot) were examined for growth performance using the Mitscherlich growth function. The results of Spearman’s partial rank correlation indicated that the upper limits of DBH and tree height growth had significant negative correlations with the slope gradient and stand density. The curvature of DBH and tree height growth curves showed significant positive correlations with the slope form. Moreover, the elevation and slope gradient showed significant negative correlations with the curvature of tree height growth curve. However, the time lag of DBH growth showed a significant negative correlation with the slope position, while the slope gradient was positively correlated with the time lag of tree height growth. These results suggest that teak planted at lower slopes has faster growth rates and that there is an interaction with the gentle concave slope of this area.


2021 ◽  
pp. 0734242X2110667
Author(s):  
Hongjun Sun ◽  
Erchong Gao ◽  
Aipeng Zhou

After the landfill site is sealed, the uneven settlement is related to the safety of reutilisation of the site, and it is critical to calculate the uneven settlement of the site without error. In this article, the soil parameter of garbage body was changed with biodegradation. Fast Lagrangian Analysis of Continua in three dimensions (FLAC 3D) numerical simulation was applied to the settlement of the landfill site closure. In calculating the settlement of landfill, the soil parameters of landfill with age were obtained by field drilling experiments. The parameters can reflect the characteristics of soil organic matter in different biodegradation stages. Finally, the uneven settlement within 20 years of the closure period was obtained by the numerical simulation taking Jinzhou Nanshan landfill as an example. The results show that the settlement with the age increases gradually, but the rate will be more and more moderate, and the maximum subsidence value in the sealing field after 20 years will be 9.11 m, 15.71% of the maximum elevation. Around the landfill slope position of uneven settlement rate is bigger, and the maximum angle of uneven settlement is up to 45°. But the middle position is small, which is close to 0°.


2021 ◽  
Vol 10 (1) ◽  
pp. 72
Author(s):  
Deqiang Chen ◽  
Weihong Sun ◽  
Shuang Xiang ◽  
Shuangquan Zou

Soil bacterial communities and root-associated microbiomes play important roles in the nutrient absorption and healthy growth of host plants. Cinnamomum camphora is an important timber and special economic forest tree species in Fujian Province. In this study, the high-throughput sequencing technique was used to analyze the composition, diversity, and function of the bacterial communities present in the soil from different samples and slope positions of C. camphora. The results of this analysis demonstrated that the related bacterial communities in C. camphora soil were mainly clustered based on sample type. Bacterial alpha diversity in the rhizosphere and bulk soil of C. camphora growing downhill was higher than that of C. camphora growing uphill. At the phylum level, Bacteroidetes, Proteobacteria, Chloroflexi, and Gemmatimonadetes were positively correlated with pH, available phosphorus, total phosphorus, available potassium, and total potassium, while Acidobacteria and Verrucomicrobia were negatively correlated with alkaline-hydrolyzable nitrogen. These results show that there were remarkable differences in the composition, diversity, and function of related bacterial communities between different sample types of C. camphora soil. The slope position had a marked effect on the bacterial communities in the rhizosphere and bulk soil, while the root endosphere remained unaffected.


2021 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Lei Li ◽  
Chong Xu ◽  
Xiwei Xu ◽  
Zhongjian Zhang ◽  
Jia Cheng

Inventories of historical landslides play an important role in the assessment of natural hazards. In this study, we used high-resolution satellite imagery from Google Earth to interpret large landslides in Baoji city, Shaanxi Province on the southwestern edge of the Loess Plateau. Then, a comprehensive and detailed map of the landslide distribution in this area was prepared in conjunction with the historical literature, which includes 3440 landslides. On this basis, eight variables, including elevation, slope, aspect, slope position, distance to the fault, land cover, lithology and distance to the stream were selected to examine their influence on the landslides in the study area. Landslide number density (LND) and landslide area percentage (LAP) were used as evaluation indicators to analyze the spatial distribution characteristics of the landslides. The results show that most of the landslides are situated at elevations from 500 to 1400 m. The LND and LAP reach their peaks at slopes of 10–20°. Slopes facing WNW and NW directions, and middle and lower slopes are more prone to sliding with higher LND and LAP. LND and LAP show a decreasing trend as the distance to the fault or stream increases, followed by a slow rise. Landslides occur primarily in the areas covered by crops. Regarding lithology, the regions covered by the Quaternary loess and Cretaceous gravels are the main areas where landslides occur. The results would be helpful for further understanding the developmental characteristics and spatial distribution of landslides on the Loess Plateau, and also provide a support to subsequent landslide susceptibility mapping in this region.


Forests ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 28
Author(s):  
Xingfu Wang ◽  
Xianfei Huang ◽  
Kangning Xiong ◽  
Jiwei Hu ◽  
Zhenming Zhang ◽  
...  

To study the spatial distribution characteristics of soil organic carbon (SOC) coupled with rocky desertification, 1212 soil samples from 152 soil profiles were sampled from different karst landforms, including karst low hills/virgin forest (KLH) in Libo County, a karst peak-cluster depression (KPCD) in Xingyi County, a karst canyon (KC) in Guanling County, a karst plateau basin (KPB) in Puding County and a karst trough valley (KTV) in Yinjiang County. The spatial distribution characteristics of the responses of SOC, SOC density (SOCD), rocky desertification and soil bulk density (SBD) to different influencing factors were analyzed. The relationships among SOC, SOCD, rocky desertification and SBD were analyzed using Pearson correlation analysis. The SOC storage capacity was characterized by using SOCD, and then the SOC storage capacity in different evolution stages of karst landforms was assessed. The SOC contents of KLH, KPCD, KC, KPB and KTV ranged from 6.16 to 38.20 g·kg−1, 7.42 to 27.08 g·kg−1, 6.28 to 35.17 g·kg−1, 4.62 to 23.79 g·kg−1 and 5.24 to 37.85 g·kg−1, respectively, and their average SOCD values (0–100 cm) were 7.37, 10.79, 7.06, 8.51 and 7.84 kg·m−2, respectively. The karst landforms as ordered by SOC storage capacity were KPCD > KPB > KLH > KTV > KC. The SOC content was negatively correlated with the SBD; light rocky desertification may lead to SOC accumulation. The rocky desertification degree and SBD were closely associated with slope position and gradient. Rocky desertification first increased, then decreased from mountain foot to summit, and increased with increasing slope gradient. However, the SBD decreased from mountain foot to summit and with increasing slope gradient. The SOC contents on the northern aspect of the mountains were generally higher than the other aspects. In summary, rock outcrops controlled the SOC contents in the studied regions. The slope position, gradient and aspect influenced the composition and distribution of vegetation, which influenced the evolution of rocky desertification. Therefore, these factors indirectly affected the SOC content. Additionally, the SOCD decreased with increasing rocky desertification. During the different evolution stages of karst landforms, the SOC storage capacity first decreases, then increases.


2021 ◽  
pp. 18-24
Author(s):  
Alabi K. O.

Topography has an influence on soil erosion and consequently on the properties of soils. The effect of slope position on soil properties is of great importance in soil suitability assessment. This study assessed the effect of topographic position on the characteristics of soil of basement complex rocks derived soils under Teak (Tectona grandis) and Gmelina (Gmelina arborea) plantations in Osun sacred grove, Onigambari and Omo forest reserves situated within South-West Nigeria. Three soil profiles were dug in each landuse type, sited at the upper, middle and lower slope positions along a toposequence. Soil samples were collected according to their pedogenetic horizons and were analyzed using standard methods. Results showed variations in colour, depth of soil profile, soil structure, texture, drainage and soil consistence. The high sand content dominated the particle size fraction in all the soils formed from the three locations, and base saturation was rated very high with values >90% irrespective of the toposequence or slope position. The result of correlation analysis between slope position and content of N, P, K and CEC showed a significant relationship irrespective of locations with N(r = 0.019< 0.05) respectively. Despite variation in soil properties as influenced by topography, the studied soils can sustain the current land use type. It was concluded that soils on different topographic positions should be managed differently.


Author(s):  
Utin U. E ◽  
Essien G. E

A study was conducted to determine the effects of slope position and fertilizer type on soil properties and growth of maize (Zea mays) on Coastal Plain Sands of Akwa Ibom State, Nigeria. Results obtained showed that soils of lower slope (LS) had the highest contents of clay and silt compared with those of upper slope (US) position. Bulk density of the upper slope soil and that of the middle slope (MS) soils were significantly higher (P≤0.05) than that of LS soil and subsequently, total porosity and saturated hydraulic conductivity (Ksat) increased downslope. Bulk density of soils that received poultry manure (PM) and NPK+PM were significantly reduced compared to those of NPK and control while total porosity and Ksat of soils that received PM and NPK+PM were significantly higher (P≤0.05) than those of NPK and control. Soils of LS had highest pH, organic carbon, total nitrogen, available phosphorus, ECEC compared to those of MS and US. The application of poultry manure yielded increase in soil pH, soil organic carbon, total nitrogen, available phosphorus and ECEC when compared to soils of NPK and control. Growth of maize obtained with LS were consistently higher than those of the MS and US soils. Soils of LS that received NPK and NPK+PM had consistently similar maize growth, higher than other combinations of slope position and fertilizer type. The complementary application of poultry manure and NPK 15:15:15 can be the best option for increasing the fertility of soils with varying slope positions on Coastal Plain Sands.


2021 ◽  
Vol 13 (17) ◽  
pp. 9845
Author(s):  
Mengdie Feng ◽  
Dengyu Zhang ◽  
Binghui He ◽  
Ke Liang ◽  
Peidong Xi ◽  
...  

Land use change and slope position are commonly identified as the key factors affecting the soil organic carbon (C), total nitrogen (N), and total phosphorus (P) traits in distinct ecological scales. However, the directions of these effects are still unclear in some fragile terrestrial ecosystems. This study aimed to determine the characteristics of soil C, N, and P concentrations and stoichiometry as affected by different land uses and slope positions in a representative purple soil hillslope in Three Gorges Reservoir Area (TGRA), China, which is experiencing severe soil erosion and non-point source pollution. A total of 108 soil samples were collected from secondary forest, orchard plantation, and cropland on the upper, middle, and lower slopes, respectively. Soil C, N, and P concentrations and their stoichiometric ratios were determined. The results showed that soil C concentration was not affected by land use, while soil N and P concentrations were both the highest in orchard plantation rather than in secondary forest and cropland, resulting in the lowest C:N, C:P, and N:P ratios in the orchard plantation. Soil C and N concentrations synchronously decreased from upper slope to the lower slope, and soil P concentration was not markedly different among slope positions. This also caused the insignificant difference in soil C:N ratio and the remarkably lowest C:P and N:P ratios on the lower slope. There were significant interactive effects of land use and slope position on the study soil variables except soil P concentration. Our results highlight the effects of land use and slope position on soil C, N, and P traits and point to the decoupling of linkages between soil P and soil C as well as N due to the severe soil erosion and overuse of fertilization in the TGRA.


Land ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 906
Author(s):  
Xiaogang Ding ◽  
Zhengyong Zhao ◽  
Zisheng Xing ◽  
Shengting Li ◽  
Xiaochuan Li ◽  
...  

Cadmium (Cd) is a toxic metal and found in various soils, including forest soils. The great spatial heterogeneity in soil Cd makes it difficult to determine its distribution. Both traditional soil surveys and spatial modeling have been used to study the natural distribution of Cd. However, traditional methods are highly labor-intensive and expensive, while modeling is often encumbered by the need to select the proper predictors. In this study, based on intensive soil sampling (385 soil pits plus 64 verification soil pits) in subtropical forests in Yunfu, Guangdong, China, we examined the impacting factors and the possibility of combining existing soil information with digital elevation model (DEM)-derived variables to predict the Cd concentration at different soil depths along the landscape. A well-developed artificial neural network model (ANN), multi-variate analysis, and principal component analysis were used and compared using the same dataset. The results show that soil Cd concentration varied with soil depth and was affected by the top 0–20 cm soil properties, such as soil sand or clay content, and some DEM-related variables (e.g., slope and vertical slope position, varying with depth). The vertical variability in Cd content was found to be correlated with metal contents (e.g., Cu, Zn, Pb, Ni) and Cd contents in the layer immediately above. The selection of candidate predictors differed among different prediction models. The ANN models showed acceptable accuracy (around 30% of predictions have a relative error of less than 10%) and could be used to assess the large-scale Cd impact on environmental quality in the context of intensifying industrialization and climate change, particularly for ecosystem management in this region or other regions with similar conditions.


Sign in / Sign up

Export Citation Format

Share Document