Inhibition of TGF-β-Induced Collagen Production in Rabbit Flexor Tendon with Mannose-6-Phosphate in Vitro

Orthopedics ◽  
2010 ◽  
Author(s):  
Chang-Suo Xia ◽  
Xuan-Ying Yang ◽  
Wang Yingzhen ◽  
Kang Sun ◽  
Shaoqi Tian
2002 ◽  
Vol 27 (4) ◽  
pp. 615-620 ◽  
Author(s):  
Matthew B. Klein ◽  
Naveen Yalamanchi ◽  
Hung Pham ◽  
Michael T. Longaker ◽  
James Chan

2001 ◽  
Vol 26 (5) ◽  
pp. 847-854 ◽  
Author(s):  
Matthew B. Klein ◽  
Hung Pham ◽  
Naveen Yalamanchi ◽  
James Chang

1994 ◽  
Vol 19 (5) ◽  
pp. 769-776 ◽  
Author(s):  
David L. Packer ◽  
George W. Dombi ◽  
Ping Yang Yu ◽  
Paul Zidel ◽  
Walter G. Sullivan

2001 ◽  
Vol 26 (5) ◽  
pp. 833-840 ◽  
Author(s):  
David W. Sanders ◽  
Andrew D. Milne ◽  
James A. Johnson ◽  
Cynthia E. Dunning ◽  
Robert S. Richards ◽  
...  

2012 ◽  
Vol 38 (4) ◽  
pp. 418-423 ◽  
Author(s):  
E. McDonald ◽  
J. A. Gordon ◽  
J. M. Buckley ◽  
L. Gordon

Our goal was to investigate and compare the mechanical properties of multifilament stainless steel suture (MFSS) and polyethylene multi-filament core FiberWire in flexor tendon repairs. Flexor digitorum profundus tendons were repaired in human cadaver hands with either a 4-strand cruciate cross-lock repair or 6-strand modified Savage repair using 4-0 and 3-0 multifilament stainless steel or FiberWire. The multifilament stainless steel repairs were as strong as those performed with FiberWire in terms of ultimate load and load at 2 mm gap. This study suggests that MFSS provides as strong a repair as FiberWire. The mode of failure of the MFSS occurred by the suture pulling through the tendon, which suggests an advantage in terms of suture strength.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Hongmei Peng ◽  
Oscar Carretero ◽  
Xiao-Ping Yang ◽  
Pablo Nakagawa ◽  
Jiang Xu ◽  
...  

Elevated interleukin-4 (IL-4) levels are positively related to cardiac fibrosis in heart failure and hypertension. Using Balb/c exhibiting high circulating IL-4, Balb/c- Il4 tm2Nnt (IL-4 knockout with Balb/c background, IL-4 -/- ) and C57BL/6 mice, as well as cultured cardiac fibroblasts (CFs), we hypothesized that 1) high levels of IL-4 result in cardiac fibrosis, making the heart susceptible to angiotensin II (Ang II)-induced damage, and 2) IL-4 potently stimulates collagen production by CFs. Each strain (9- to 12-week old male) received vehicle or Ang II (1.4 mg/kg/day, s.c. via osmotic mini-pump) for 8 weeks. Cardiac fibrosis and function were determined by histology and echocardiography, respectively. Compared to C57BL/6, Balb/c mice had doubled interstitial collagen in the heart, enlarged left ventricle and decreased cardiac function along with elevated cardiac IL-4 protein (1.00±0.08 in C57BL/6 vs 2.61±0.46 in Balb/c, p <0.05); all those changes were significantly attenuated in IL-4 -/- (Table 1). Ang II further deteriorated cardiac fibrosis and dysfunction in Balb/c; these detrimental effects were attenuated in IL-4 -/- , although the three strains had a similar level of hypertension. In vitro study revealed that IL-4Rα was constitutively expressed in CFs (Western blot), and IL-4 potently stimulated collagen production by CFs (hydroxproline assay, from 18.89±0.85 to 38.81±3.61 μg/mg at 10 ng/ml, p <0.01). Our study demonstrates for the first time that IL-4, as a potent pro-fibrotic cytokine in the heart, contributes to cardiac fibrotic remodeling and dysfunction. Thus IL-4 may be a potential therapeutic target for cardiac fibrosis and dysfunction.


Sign in / Sign up

Export Citation Format

Share Document