scholarly journals Global dynamics for a class of reaction-diffusion equations with distributed delay and neumann condition

2020 ◽  
Vol 19 (5) ◽  
pp. 2473-2490
Author(s):  
Tarik Mohammed Touaoula ◽  
Author(s):  
Taishan Yi ◽  
Xingfu Zou

In this paper, we consider a class of delay reaction–diffusion equations (DRDEs) with a parameter ε >0. A homogeneous Neumann boundary condition and non-negative initial functions are posed to the equation. By letting , such an equation is formally reduced to a scalar difference equation (or map dynamical system). The main concern is the relation of the absolute (or delay-independent) global stability of a steady state of the equation and the dynamics of the nonlinear map in the equation. By employing the idea of attracting intervals for solution semiflows of the DRDEs, we prove that the globally stable dynamics of the map indeed ensures the delay-independent global stability of a constant steady state of the DRDEs. We also give a counterexample to show that the delay-independent global stability of DRDEs cannot guarantee the globally stable dynamics of the map. Finally, we apply the abstract results to the diffusive delay Nicholson blowfly equation and the diffusive Mackey–Glass haematopoiesis equation. The resulting criteria for both model equations are amazingly simple and are optimal in some sense (although there is no existing result to compare with for the latter).


2020 ◽  
Vol 18 (1) ◽  
pp. 1552-1564
Author(s):  
Huimin Tian ◽  
Lingling Zhang

Abstract In this paper, the blow-up analyses in nonlocal reaction diffusion equations with time-dependent coefficients are investigated under Neumann boundary conditions. By constructing some suitable auxiliary functions and using differential inequality techniques, we show some sufficient conditions to ensure that the solution u ( x , t ) u(x,t) blows up at a finite time under appropriate measure sense. Furthermore, an upper and a lower bound on blow-up time are derived under some appropriate assumptions. At last, two examples are presented to illustrate the application of our main results.


Sign in / Sign up

Export Citation Format

Share Document