scholarly journals Global solutions of a two-dimensional Riemann problem for the pressure gradient system

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Gui-Qiang G. Chen ◽  
Qin Wang ◽  
Shengguo Zhu
1998 ◽  
Vol 4 (4) ◽  
pp. 609-634 ◽  
Author(s):  
Peng Zhang ◽  
◽  
Jiequan Li ◽  
Tong Zhang ◽  
◽  
...  

2020 ◽  
Vol 19 (6) ◽  
pp. 3387-3428
Author(s):  
Hanchun Yang ◽  
◽  
Meimei Zhang ◽  
Qin Wang

Author(s):  
Yu Zhang ◽  
Yanyan Zhang

The Riemann problem for the two-dimensional steady pressureless isentropic relativistic Euler equations with delta initial data is studied. First, the perturbed Riemann problem with three pieces constant initial data is solved. Then, via discussing the limits of solutions to the perturbed Riemann problem, the global solutions of Riemann problem with delta initial data are completely constructed under the stability theory of weak solutions. Interestingly, the delta contact discontinuity is found in the Riemann solutions of the two-dimensional steady pressureless isentropic relativistic Euler equations with delta initial data.


1998 ◽  
Vol 371 ◽  
pp. 207-232 ◽  
Author(s):  
G. VITTORI ◽  
R. VERZICCO

Numerical simulations of Navier–Stokes equations are performed to study the flow originated by an oscillating pressure gradient close to a wall characterized by small imperfections. The scenario of transition from the laminar to the turbulent regime is investigated and the results are interpreted in the light of existing analytical theories. The ‘disturbed-laminar’ and the ‘intermittently turbulent’ regimes detected experimentally are reproduced by the present simulations. Moreover it is found that imperfections of the wall are of fundamental importance in causing the growth of two-dimensional disturbances which in turn trigger turbulence in the Stokes boundary layer. Finally, in the intermittently turbulent regime, a description is given of the temporal development of turbulence characteristics.


Sign in / Sign up

Export Citation Format

Share Document