scholarly journals Global well-posedness in a chemotaxis system with oxygen consumption

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Xujie Yang

<p style='text-indent:20px;'>Motivated by the studies of the hydrodynamics of the tethered bacteria <i>Thiovulum majus</i> in a liquid environment, we consider the following chemotaxis system</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \left\{ \begin{split} &amp; n_t = \Delta n-\nabla\cdot\left(n\chi(c)\nabla{c}\right)+nc, &amp;x\in \Omega, t&gt;0, \ &amp; c_t = \Delta c-{\bf u}\cdot\nabla c-nc, &amp;x\in \Omega, t&gt;0\ \end{split} \right. \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>under homogeneous Neumann boundary conditions in a bounded convex domain <inline-formula><tex-math id="M1">\begin{document}$ \Omega\subset \mathbb{R}^d(d\in\{2, 3\}) $\end{document}</tex-math></inline-formula> with smooth boundary. For any given fluid <inline-formula><tex-math id="M2">\begin{document}$ {\bf u} $\end{document}</tex-math></inline-formula>, it is proved that if <inline-formula><tex-math id="M3">\begin{document}$ d = 2 $\end{document}</tex-math></inline-formula>, the corresponding initial-boundary value problem admits a unique global classical solution which is uniformly bounded, while if <inline-formula><tex-math id="M4">\begin{document}$ d = 3 $\end{document}</tex-math></inline-formula>, such solution still exists under the additional condition that <inline-formula><tex-math id="M5">\begin{document}$ 0&lt;\chi\leq \frac{1}{16\|c(\cdot, 0)\|_{L^\infty(\Omega)}} $\end{document}</tex-math></inline-formula>.</p>

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Yu Ma ◽  
Chunlai Mu ◽  
Shuyan Qiu

<p style='text-indent:20px;'>This work deals with a Neumann initial-boundary value problem for a two-species predator-prey chemotaxis system</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{eqnarray*} \left\{ \begin{array}{llll} u_t = d_1\Delta u-\chi\nabla\cdot(u\nabla w)+u(\lambda-u+av),\quad &amp;x\in \Omega,\quad t&gt;0,\\ v_t = d_2\Delta v+\xi\nabla\cdot(v\nabla w)+v(\mu-v-bu),\quad &amp;x\in \Omega,\quad t&gt;0,\\ 0 = d_3\Delta w-\alpha w+\beta_1 u+ \beta_2 v,\quad &amp;x\in\Omega,\quad t&gt;0,\\ \end{array} \right. \end{eqnarray*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>in a bounded domain <inline-formula><tex-math id="M1">\begin{document}$ \Omega\subset \mathbb{R}^n \,\,(n = 2,3) $\end{document}</tex-math></inline-formula> with smooth boundary <inline-formula><tex-math id="M2">\begin{document}$ \partial\Omega $\end{document}</tex-math></inline-formula>, where the parameters <inline-formula><tex-math id="M3">\begin{document}$ d_1, d_2, d_3,\chi, \xi,\lambda,\mu,\alpha,\beta_1,\beta_2, a, b $\end{document}</tex-math></inline-formula> are positive. It is shown that for any appropriate regular initial date <inline-formula><tex-math id="M4">\begin{document}$ u_0 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ v_0 $\end{document}</tex-math></inline-formula>, the corresponding system possesses a global bounded classical solution in <inline-formula><tex-math id="M6">\begin{document}$ n = 2 $\end{document}</tex-math></inline-formula>, and also in <inline-formula><tex-math id="M7">\begin{document}$ n = 3 $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M8">\begin{document}$ \chi $\end{document}</tex-math></inline-formula> being sufficiently small. Moreover, by constructing some suitable functionals, it is proved that if <inline-formula><tex-math id="M9">\begin{document}$ b\lambda&lt;\mu $\end{document}</tex-math></inline-formula> and the parameters <inline-formula><tex-math id="M10">\begin{document}$ \chi $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M11">\begin{document}$ \xi $\end{document}</tex-math></inline-formula> are sufficiently small, then the solution <inline-formula><tex-math id="M12">\begin{document}$ (u,v,w) $\end{document}</tex-math></inline-formula> of this system converges to <inline-formula><tex-math id="M13">\begin{document}$ (\frac{\lambda+a\mu}{1+ab}, \frac{\mu-b\lambda}{1+ab}, \frac{\beta_1(\lambda+a\mu)+\beta_2(\mu-b\lambda)}{\alpha(1+ab)}) $\end{document}</tex-math></inline-formula> exponentially as <inline-formula><tex-math id="M14">\begin{document}$ t\rightarrow \infty $\end{document}</tex-math></inline-formula>; if <inline-formula><tex-math id="M15">\begin{document}$ b\lambda\geq \mu $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M16">\begin{document}$ \chi $\end{document}</tex-math></inline-formula> is sufficiently small and <inline-formula><tex-math id="M17">\begin{document}$ \xi $\end{document}</tex-math></inline-formula> is arbitrary, then the solution <inline-formula><tex-math id="M18">\begin{document}$ (u,v,w) $\end{document}</tex-math></inline-formula> converges to <inline-formula><tex-math id="M19">\begin{document}$ (\lambda,0,\frac{\beta_1\lambda}{\alpha}) $\end{document}</tex-math></inline-formula> with exponential decay when <inline-formula><tex-math id="M20">\begin{document}$ b\lambda&gt; \mu $\end{document}</tex-math></inline-formula>, and with algebraic decay when <inline-formula><tex-math id="M21">\begin{document}$ b\lambda = \mu $\end{document}</tex-math></inline-formula>.</p>


2014 ◽  
Vol 144 (5) ◽  
pp. 1067-1084 ◽  
Author(s):  
Youshan Tao ◽  
Michael Winkler

This paper deals with the coupled chemotaxis-haptotaxis model of cancer invasion given bywhereχ, ξandμare positive parameters andΩ ⊂ ℝn(n≥ 1) is a bounded domain with smooth boundary. Under zero-flux boundary conditions, it is shown that, for anyμ>χand any sufficiently smooth initial data (u0,w0) satisfyingu0≥ 0 andw0> 0, the associated initial–boundary-value problem possesses a unique global smooth solution that is uniformly bounded. Moreover, we analyse the stability and attractivity properties of the non-trivial homogeneous equilibrium (u, v, w) ≡ (1,1, 0) and establish a quantitative result relating the domain of attraction of this steady state to the size ofμ. In particular, this will imply that wheneveru0> 0 and 0 <w0< 1 inthere exists a positive constantμ* depending only onχ, ξ, Ω, u0andw0such that for anyμ<μ* the above global solution (u, v, w) approaches the spatially uniform state (1, 1, 0) as time goes to infinity.


Author(s):  
Yitong Pei ◽  
Boling Guo

In this paper, we study the initial-boundary-value problem (IBVP) for coupled Korteweg-de Vries equations posed on a finite interval with nonhomogeneous boundary conditions. We overcome the requirement for stronger smooth boundary conditions in the traditional method via the Laplace transform. Our approach uses the strong Kato smoothing property and the contraction mapping principle.


Author(s):  
H. A. Levine ◽  
Q. S. Zhang

Let D be a domain in Rn with bounded complement and let n ≠ 2. For the initial-boundary value problem we prove that there are no non-trivial global (non-negative) solutions if 0 < n (p − 1) ≤ 2 and there exist both global non-trivial and non-global solutions if n (p − 1) > 2.


1978 ◽  
Vol 71 ◽  
pp. 181-198 ◽  
Author(s):  
Akinobu Shimizu

Let D be a bounded domain in Rd with smooth boundary ∂D. We denote by Bt, t ≥ 0, a one-dimensional Brownian motion. We shall consider the initial-boundary value problem


2012 ◽  
Vol 490-495 ◽  
pp. 2282-2285
Author(s):  
Xue Yan Zhang ◽  
Qian Li ◽  
Da Quan Gu ◽  
Tai Ping Hou

The initial boundary value problem for parabolic equation with Neumann boundary condition is a kind of classical problem in partial differential equations. In this paper we use the artificial boundary to solve the moving boundary problem. Potential theory and difference method are discussed. Numerical results are given to support the proposed schemes and to give the compare of the two methods.


2020 ◽  
Vol 35 (1) ◽  
pp. 243
Author(s):  
Süleyman Çetinkaya ◽  
Ali Demir ◽  
Hülya Kodal Sevindir

The motivation of this study is to determine the analytic solution of initial boundary value problem including time fractional differential equation with Neumann boundary conditions in one dimension. By making use of seperation of variables, the solution is constructed in the form of a Fourier series with respect to the eigenfunctions of a corresponding Sturm-Liouville eigenvalue problem.


2015 ◽  
Vol 25 (04) ◽  
pp. 721-746 ◽  
Author(s):  
Tong Li ◽  
Anthony Suen ◽  
Michael Winkler ◽  
Chuan Xue

We study non-negative solutions to the chemotaxis system [Formula: see text] under no-flux boundary conditions in a bounded planar convex domain with smooth boundary, where f and S are given parameter functions on Ω × [0, ∞)2 with values in [0, ∞) and ℝ2×2, respectively, which are assumed to satisfy certain regularity assumptions and growth restrictions. Systems of type (⋆), in the special case [Formula: see text] reducing to a version of the standard Keller–Segel system with signal consumption, have recently been proposed as a model for swimming bacteria near a surface, with the sensitivity tensor then given by [Formula: see text], reflecting rotational chemotactic motion. It is shown that for any choice of suitably regular initial data (u0, v0) fulfilling a smallness condition on the norm of v0 in L∞(Ω), the corresponding initial-boundary value problem associated with (⋆) possesses a globally defined classical solution which is bounded. This result is achieved through the derivation of a series of a priori estimates involving an interpolation inequality of Gagliardo–Nirenberg type which appears to be new in this context. It is next proved that all corresponding solutions approach a spatially homogeneous steady state of the form (u, v) ≡ (μ, κ) in the large time limit, with μ := fΩu0 and some κ ≥ 0. A mild additional assumption on the positivity of f is shown to guarantee that κ = 0. Finally, numerical solutions are presented which suggest the occurrence of wave-like solution behavior.


2018 ◽  
Vol 28 (07) ◽  
pp. 1413-1451 ◽  
Author(s):  
Dan Li ◽  
Chunlai Mu ◽  
Pan Zheng

This paper deals with the quasilinear chemotaxis system modeling tumor invasion [Formula: see text] under homogenous Neumann boundary conditions in a smoothly convex bounded domain [Formula: see text] [Formula: see text], where [Formula: see text] is a given function satisfying [Formula: see text] for all [Formula: see text] with [Formula: see text] and [Formula: see text]. Here the matrix-valued function [Formula: see text] fulfills [Formula: see text] for all [Formula: see text] with some [Formula: see text] and [Formula: see text]. It is shown that for all reasonably regular initial data, a corresponding initial-boundary value problem for this system possesses a globally defined weak solution under some assumptions. Based on this boundedness property, it can finally be proved that in the large time limit, any such solution approaches the spatially homogenous equilibrium [Formula: see text] in an appropriate sense, where [Formula: see text], [Formula: see text] and [Formula: see text] provided that merely [Formula: see text] on [Formula: see text]. To the best of our knowledge, there are the first results on boundedness and asymptotic behavior of the system.


Sign in / Sign up

Export Citation Format

Share Document