scholarly journals Upper bounds for the attractor dimension of damped Navier-Stokes equations in $\mathbb R^2$

2015 ◽  
Vol 36 (4) ◽  
pp. 2085-2102 ◽  
Author(s):  
Alexei Ilyin ◽  
Kavita Patni ◽  
Sergey Zelik
2021 ◽  
Vol 4 (5) ◽  
pp. 1-25
Author(s):  
Kyungkeun Kang ◽  
◽  
Dongkwang Kim

<abstract><p>We construct generalized solutions for the Keller-Segel system with a degradation source coupled to Navier Stokes equations in three dimensions, in case that the power of degradation is smaller than quadratic. Furthermore, if the logistic type source is purely damping with no growing effect, we prove that solutions converge to zero in some norms and provide upper bounds of convergence rates in time.</p></abstract>


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


AIAA Journal ◽  
2001 ◽  
Vol 39 ◽  
pp. 56-63
Author(s):  
W. Kyle Anderson ◽  
James C. Newman ◽  
David L. Whitfield ◽  
Eric J. Nielsen

Sign in / Sign up

Export Citation Format

Share Document