scholarly journals Sharp well-posedness of the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili equation in anisotropic Sobolev spaces

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Wei Yan ◽  
Yimin Zhang ◽  
Yongsheng Li ◽  
Jinqiao Duan

<p style='text-indent:20px;'>We consider the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili (RMKP) equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} \partial_{x}\left(u_{t}-\beta\partial_{x}^{3}u +\partial_{x}(u^{2})\right)+\partial_{y}^{2}u-\gamma u = 0 \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>in the anisotropic Sobolev spaces <inline-formula><tex-math id="M1">\begin{document}$ H^{s_{1},s_{2}}(\mathbb{R}^{2}) $\end{document}</tex-math></inline-formula>. When <inline-formula><tex-math id="M2">\begin{document}$ \beta &lt;0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ \gamma &gt;0, $\end{document}</tex-math></inline-formula> we prove that the Cauchy problem is locally well-posed in <inline-formula><tex-math id="M4">\begin{document}$ H^{s_{1}, s_{2}}(\mathbb{R}^{2}) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M5">\begin{document}$ s_{1}&gt;-\frac{1}{2} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ s_{2}\geq 0 $\end{document}</tex-math></inline-formula>. Our result considerably improves the Theorem 1.4 of R. M. Chen, Y. Liu, P. Z. Zhang(Transactions of the American Mathematical Society, 364(2012), 3395–3425.). The key idea is that we divide the frequency space into regular region and singular region. We further prove that the Cauchy problem for RMKP equation is ill-posed in <inline-formula><tex-math id="M7">\begin{document}$ H^{s_{1},0}(\mathbb{R}^{2}) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M8">\begin{document}$ s_{1}&lt;-\frac{1}{2} $\end{document}</tex-math></inline-formula> in the sense that the flow map associated to the rotation-modified Kadomtsev-Petviashvili is not <inline-formula><tex-math id="M9">\begin{document}$ C^{3} $\end{document}</tex-math></inline-formula>. When <inline-formula><tex-math id="M10">\begin{document}$ \beta &lt;0,\gamma &gt;0, $\end{document}</tex-math></inline-formula> by using the <inline-formula><tex-math id="M11">\begin{document}$ U^{p} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M12">\begin{document}$ V^{p} $\end{document}</tex-math></inline-formula> spaces, we prove that the Cauchy problem is locally well-posed in <inline-formula><tex-math id="M13">\begin{document}$ H^{-\frac{1}{2},0}(\mathbb{R}^{2}) $\end{document}</tex-math></inline-formula>.</p>

2019 ◽  
Vol 18 (03) ◽  
pp. 469-522
Author(s):  
Wei Yan ◽  
Yongsheng Li ◽  
Jianhua Huang ◽  
Jinqiao Duan

The goal of this paper is three-fold. First, we prove that the Cauchy problem for a generalized KP-I equation [Formula: see text] is locally well-posed in the anisotropic Sobolev spaces [Formula: see text] with [Formula: see text] and [Formula: see text]. Second, we prove that the Cauchy problem is globally well-posed in [Formula: see text] with [Formula: see text] if [Formula: see text]. Finally, we show that the Cauchy problem is globally well-posed in [Formula: see text] with [Formula: see text] if [Formula: see text] Our result improves the result of Saut and Tzvetkov [The Cauchy problem for the fifth order KP equations, J. Math. Pures Appl. 79 (2000) 307–338] and Li and Xiao [Well-posedness of the fifth order Kadomtsev–Petviashvili-I equation in anisotropic Sobolev spaces with nonnegative indices, J. Math. Pures Appl. 90 (2008) 338–352].


A method is described by means of which the characteristic initial value problem can be reduced to the Cauchy problem and examples are given of how it can be used in practice. As an application it is shown that the characteristic initial value problem for the Einstein equations in vacuum or with perfect fluid source is well posed when data are given on two transversely intersecting null hypersurfaces. A new discussion is given of the freely specifiable data for this problem.


2014 ◽  
Vol 11 (01) ◽  
pp. 185-213 ◽  
Author(s):  
TATSUO NISHITANI

We study differential operators of order 2 and establish new energy estimates which ensure that the micro supports of solutions to the Cauchy problem propagate with finite speed. We then study the Cauchy problem for non-effectively hyperbolic operators with no null bicharacteristic tangent to the doubly characteristic set and with zero positive trace. By checking the energy estimates, we ensure the propagation with finite speed of the micro supports of solutions, and we prove that the Cauchy problem for such non-effectively hyperbolic operators is C∞ well-posed if and only if the Levi condition holds.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Rui Li ◽  
Xing Lin ◽  
Zongwei Ma ◽  
Jingjun Zhang

We study the Cauchy problem for a type of generalized Zakharov system. With the help of energy conservation and approximate argument, we obtain global existence and uniqueness in Sobolev spaces for this system. Particularly, this result implies the existence of classical solution for this generalized Zakharov system.


2019 ◽  
Vol 27 (6) ◽  
pp. 815-834
Author(s):  
Yulia Shefer ◽  
Alexander Shlapunov

AbstractWe consider the ill-posed Cauchy problem in a bounded domain{\mathcal{D}}of{\mathbb{R}^{n}}for an elliptic differential operator{\mathcal{A}(x,\partial)}with data on a relatively open subsetSof the boundary{\partial\mathcal{D}}. We do it in weighted Sobolev spaces{H^{s,\gamma}(\mathcal{D})}containing the elements with prescribed smoothness{s\in\mathbb{N}}and growth near{\partial S}in{\mathcal{D}}, controlled by a real number γ. More precisely, using proper (left) fundamental solutions of{\mathcal{A}(x,\partial)}, we obtain a Green-type integral formula for functions from{H^{s,\gamma}(\mathcal{D})}. Then a Neumann-type series, constructed with the use of iterations of the (bounded) integral operators applied to the data, gives a solution to the Cauchy problem in{H^{s,\gamma}(\mathcal{D})}whenever this solution exists.


Sign in / Sign up

Export Citation Format

Share Document