scholarly journals Well-posedness of the Cauchy problem of Ostrovsky equation in anisotropic Sobolev spaces

2007 ◽  
Vol 327 (1) ◽  
pp. 88-100 ◽  
Author(s):  
Hua Wang ◽  
Shangbin Cui
2019 ◽  
Vol 18 (03) ◽  
pp. 469-522
Author(s):  
Wei Yan ◽  
Yongsheng Li ◽  
Jianhua Huang ◽  
Jinqiao Duan

The goal of this paper is three-fold. First, we prove that the Cauchy problem for a generalized KP-I equation [Formula: see text] is locally well-posed in the anisotropic Sobolev spaces [Formula: see text] with [Formula: see text] and [Formula: see text]. Second, we prove that the Cauchy problem is globally well-posed in [Formula: see text] with [Formula: see text] if [Formula: see text]. Finally, we show that the Cauchy problem is globally well-posed in [Formula: see text] with [Formula: see text] if [Formula: see text] Our result improves the result of Saut and Tzvetkov [The Cauchy problem for the fifth order KP equations, J. Math. Pures Appl. 79 (2000) 307–338] and Li and Xiao [Well-posedness of the fifth order Kadomtsev–Petviashvili-I equation in anisotropic Sobolev spaces with nonnegative indices, J. Math. Pures Appl. 90 (2008) 338–352].


2012 ◽  
Vol 6 (2) ◽  
pp. 214-237
Author(s):  
Del Molina ◽  
Alarcon Arbieto ◽  
Iorio José

In this work we deal with the Cauchy problem associated to the Brinkman flow, which models fluid flow in certain types of porous media. We study local and global well-posedness in Sobolev spaces Hs(Rn), s>n/2+1, using Kato's theory for quasilinear equations and parabolic regularization.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Wei Yan ◽  
Yimin Zhang ◽  
Yongsheng Li ◽  
Jinqiao Duan

<p style='text-indent:20px;'>We consider the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili (RMKP) equation</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} \partial_{x}\left(u_{t}-\beta\partial_{x}^{3}u +\partial_{x}(u^{2})\right)+\partial_{y}^{2}u-\gamma u = 0 \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>in the anisotropic Sobolev spaces <inline-formula><tex-math id="M1">\begin{document}$ H^{s_{1},s_{2}}(\mathbb{R}^{2}) $\end{document}</tex-math></inline-formula>. When <inline-formula><tex-math id="M2">\begin{document}$ \beta &lt;0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ \gamma &gt;0, $\end{document}</tex-math></inline-formula> we prove that the Cauchy problem is locally well-posed in <inline-formula><tex-math id="M4">\begin{document}$ H^{s_{1}, s_{2}}(\mathbb{R}^{2}) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M5">\begin{document}$ s_{1}&gt;-\frac{1}{2} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ s_{2}\geq 0 $\end{document}</tex-math></inline-formula>. Our result considerably improves the Theorem 1.4 of R. M. Chen, Y. Liu, P. Z. Zhang(Transactions of the American Mathematical Society, 364(2012), 3395–3425.). The key idea is that we divide the frequency space into regular region and singular region. We further prove that the Cauchy problem for RMKP equation is ill-posed in <inline-formula><tex-math id="M7">\begin{document}$ H^{s_{1},0}(\mathbb{R}^{2}) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M8">\begin{document}$ s_{1}&lt;-\frac{1}{2} $\end{document}</tex-math></inline-formula> in the sense that the flow map associated to the rotation-modified Kadomtsev-Petviashvili is not <inline-formula><tex-math id="M9">\begin{document}$ C^{3} $\end{document}</tex-math></inline-formula>. When <inline-formula><tex-math id="M10">\begin{document}$ \beta &lt;0,\gamma &gt;0, $\end{document}</tex-math></inline-formula> by using the <inline-formula><tex-math id="M11">\begin{document}$ U^{p} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M12">\begin{document}$ V^{p} $\end{document}</tex-math></inline-formula> spaces, we prove that the Cauchy problem is locally well-posed in <inline-formula><tex-math id="M13">\begin{document}$ H^{-\frac{1}{2},0}(\mathbb{R}^{2}) $\end{document}</tex-math></inline-formula>.</p>


2003 ◽  
Vol 8 (1) ◽  
pp. 61-75
Author(s):  
V. Litovchenko

The well-posedness of the Cauchy problem, mentioned in title, is studied. The main result means that the solution of this problem is usual C∞ - function on the space argument, if the initial function is a real functional on the conjugate space to the space, containing the fundamental solution of the corresponding problem. The basic tool for the proof is the functional analysis technique.


Sign in / Sign up

Export Citation Format

Share Document