scholarly journals Mathematical study of the small oscillations of a floating body in a bounded tank containing an incompressible viscous liquid

2014 ◽  
Vol 19 (7) ◽  
pp. 2353-2364
Author(s):  
Doretta Vivona ◽  
◽  
Pierre Capodanno ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 4
Author(s):  
Hilal Essaouini ◽  
Pierre Capodanno

This paper deals with the mathematical study of the small motions of a system formed by a cylindrical liquid column bounded by two parallel circular rings and an internal cylindrical column constituted by a barotropic gas under zero gravity. From the equations of motion, the authors deduce a variational equation. Then, the study of the small oscillations depends on the coerciveness of a hermitian form that appears in this equation. It is proved that this last problem is reduced to an auxiliary eigenvalues problem. The discussion shows that, under a simple geometric condition, the problem is a classical vibration problem.  


1888 ◽  
Vol 43 (258-265) ◽  
pp. 174-175

The determination of the small oscillations and steady motion of a sphere which is immersed in a viscous liquid, and which is moving in a straight line, was first effected by Professor Stokes in his well-known memoir “On the Effect of the Internal Friction of Fluids on the Motion of Pendulums;” and in the appendix he also determines the steady motion of a sphere which is rotating about a fixed diameter. The same subject has also been subsequently considered by Helmholtz and other German writers; but, so far as I have been able to discover, very little appears to have been effected with respect to the solution of problems in which a solid body is set in motion in a viscous liquid in any given manner, and then left to itself. In the present paper I have endeavoured to determine the motion of a sphere which is projected vertically upwards or downwards with given velocity, and allowed to ascend or descend under the action of gravity (or any constant force), and which is surrounded by a viscous liquid of unlimited extent, which is initially at rest excepting so far as it is disturbed by the initial motion of the sphere.


Sign in / Sign up

Export Citation Format

Share Document