scholarly journals Modeling and analysis of reactive multi-component two-phase flows with mass transfer and phase transition the isothermal incompressible case

2017 ◽  
Vol 10 (4) ◽  
pp. 673-696
Author(s):  
Dieter Bothe ◽  
◽  
Jan Prüss ◽  
2019 ◽  
Vol 16 (04) ◽  
pp. 595-637
Author(s):  
Maren Hantke ◽  
Ferdinand Thein

Liquid–vapor flows with phase transitions have a wide range of applications. Isothermal two-phase flows described by a single set of isothermal Euler equations, where the mass transfer is modeled by a kinetic relation, have been investigated analytically in [M. Hantke, W. Dreyer and G. Warnecke, Exact solutions to the Riemann problem for compressible isothermal Euler equations for two-phase flows with and without phase transition, Quart. Appl. Math. 71(3) (2013) 509–540]. This work was restricted to liquid water and its vapor modeled by linear equations of state. The focus of this work lies on the generalization of the primary results to arbitrary substances, arbitrary equations of state and thus a more general kinetic relation. We prove existence and uniqueness results for Riemann problems. In particular, nucleation and cavitation are discussed.


2017 ◽  
Vol 150 ◽  
pp. 31-45 ◽  
Author(s):  
Alexandre Chiapolino ◽  
Pierre Boivin ◽  
Richard Saurel

2012 ◽  
Vol 134 (8) ◽  
Author(s):  
Zahra Baniamerian ◽  
Ramin Mehdipour ◽  
Cyrus Aghanajafi

Efficiently employing two-phase flows for cooling objectives requires comprehensive knowledge of their behavior in different conditions. Models, capable of predicting heat transfer and fluid flow trends in this area, are of great value. Numerical/analytical models in the literature are one-dimensional models involving with many simplifying assumptions. These assumptions in most cases include neglecting some mechanisms of mass transfer in two-phase flows. This study is devoted to developing an analytical two-dimensional model for simulation of fluid flow and mass transfer in two-phase flows considering the all mass transfer mechanisms (entrainment, evaporation, deposition and condensation). The correlation employed for modeling entrainment in this study, is a semiempirical correlation derived based on physical concept of entrainment phenomenon. Emphasis is put on the annular flow pattern of liquid vapor two-phase flow since this regime is the last encountered two-phase regime and has a higher heat transfer coefficient among other two-phase flow patterns. Attempts are made to employ the least possible simplification assumptions and empirical correlations in the modeling procedure. The model is then verified with experimental models of Shanawany et al., Stevanovic et al. and analytical model of Qu and Mudawar. It will be shown, considering pressure variations in both radial and axial directions along with applying our semiempirical entrainment correlation has improved the present analytical model accuracy in comparison with the accuracy of available analytical models.


Sign in / Sign up

Export Citation Format

Share Document