scholarly journals A general existence result for isothermal two-phase flows with phase transition

2019 ◽  
Vol 16 (04) ◽  
pp. 595-637
Author(s):  
Maren Hantke ◽  
Ferdinand Thein

Liquid–vapor flows with phase transitions have a wide range of applications. Isothermal two-phase flows described by a single set of isothermal Euler equations, where the mass transfer is modeled by a kinetic relation, have been investigated analytically in [M. Hantke, W. Dreyer and G. Warnecke, Exact solutions to the Riemann problem for compressible isothermal Euler equations for two-phase flows with and without phase transition, Quart. Appl. Math. 71(3) (2013) 509–540]. This work was restricted to liquid water and its vapor modeled by linear equations of state. The focus of this work lies on the generalization of the primary results to arbitrary substances, arbitrary equations of state and thus a more general kinetic relation. We prove existence and uniqueness results for Riemann problems. In particular, nucleation and cavitation are discussed.

Entropy ◽  
2019 ◽  
Vol 21 (11) ◽  
pp. 1039
Author(s):  
Maren Hantke ◽  
Ferdinand Thein

Liquid–vapor flows exhibiting phase transition, including phase creation in single-phase flows, are of high interest in mathematics, as well as in the engineering sciences. In two preceding articles the authors showed on the one hand the capability of the isothermal Euler equations to describe such phenomena (Hantke and Thein, arXiv, 2017, arXiv:1703.09431). On the other hand they proved the nonexistence of certain phase creation phenomena in flows governed by the full system of Euler equations, see Hantke and Thein, Quart. Appl. Math. 2015, 73, 575–591. In this note, the authors close the gap for two-phase flows by showing that the two-phase flows considered are not possible when the flow is governed by the full Euler equations, together with the regular Rankine-Hugoniot conditions. The arguments rely on the fact that for (regular) fluids, the differences of the entropy and the enthalpy between the liquid and the vapor phase of a single substance have a strict sign below the critical point.


2017 ◽  
Vol 28 (09) ◽  
pp. 1750120 ◽  
Author(s):  
Yong Peng ◽  
Yun Fei Mao ◽  
Bo Wang ◽  
Bo Xie

Equations of State (EOS) is crucial in simulating multiphase flows by the pseudo-potential lattice Boltzmann method (LBM). In the present study, the Peng and Robinson (P–R) and Carnahan and Starling (C–S) EOS in the pseudo-potential LBM with Exact Difference Method (EDM) scheme for two-phase flows have been compared. Both of P–R and C–S EOS have been used to study the two-phase separation, surface tension, the maximum two-phase density ratio and spurious currents. The study shows that both of P–R and C–S EOS agree with the analytical solutions although P–R EOS may perform better. The prediction of liquid phase by P–R EOS is more accurate than that of air phase and the contrary is true for C–S EOS. Predictions by both of EOS conform with the Laplace’s law. Besides, adjustment of surface tension is achieved by adjusting [Formula: see text]. The P–R EOS can achieve larger maximum density ratio than C–S EOS under the same [Formula: see text]. Besides, no matter the C–S EOS or the P–R EOS, if [Formula: see text] tends to 0.5, the computation is prone to numerical instability. The maximum spurious current for P–R is larger than that of C–S. The multiple-relaxation-time LBM still can improve obviously the numerical stability and can achieve larger maximum density ratio.


Author(s):  
Tomoji Takamasa ◽  
Takashi Hibiki

In a thermal system of spacecraft, two-phase flow system now is an excellent alternative to the conventional single-phase system in transporting large amount of thermal energy at a uniform temperature regardless of variations in the heat loads. In addition, two-phase flows exist in a wide range of applications and enabling technologies in space. This report outlines recent progress in the studies of gas-liquid two-phase flows at microgravity conditions, especially for which regarding to interfacial area transport and drift flux.


2017 ◽  
Vol 150 ◽  
pp. 31-45 ◽  
Author(s):  
Alexandre Chiapolino ◽  
Pierre Boivin ◽  
Richard Saurel

Author(s):  
A. Mousavi ◽  
A. G. Gerber ◽  
M. J. Kermani

This paper applies the Quadrature-Method-of-Moments (QMOM) to the polydispersed droplets spectrum typical in low pressure steam turbines. Various modes of nonequilibrium phase transition are present in steam turbines, starting with primary and secondary homogeneous nucleation as the main source of moisture followed by heterogeneous nucleation and surface entrainment sources. The range of phase transition possibilities leads to a wide range of droplet sizes, which are present under various combinations of inertial and thermal nonequilibrium. Given the extensive prevalence of CFD in turbomachinery design, it is of interest to develop an efficient modeling approach for polydispersed droplet flows that avoids solving an excessive number of equations to represent the droplet size distribution. Methods based on QMOM have shown promise in this regard in other applications areas of two-phase flow, and this paper attempts to quantify its potential for steam turbine applications by applying the method to supersonic nozzle studies with homogeneous and heterogeneous phase transitions.


2021 ◽  
Vol 371 ◽  
pp. 110954
Author(s):  
M. De Lorenzo ◽  
Ph. Lafon ◽  
M. Pelanti ◽  
A. Pantano ◽  
M. Di Matteo ◽  
...  

Author(s):  
Adriana Greco ◽  
Rita Mastrullo ◽  
Alfonso W. Mauro ◽  
Giuseppe P. Vanoli

A 962 points database for refrigerants two-phase flows by Greco A. and Vanoli G.P. was statistically compared to four widely used prediction methods by Lockhart and Martinelli, Chawla, Theissing and Mu¨ller-Steinhagen and Heck in order to determine the best one. The experimental points are in a wide range of operating conditions for six pure or mixed refrigerants (R134a, R22, R407C, R507A, R410A and R404A) during evaporation in a smooth horizontal tube of 6 m length and 6 mm ID.


Sign in / Sign up

Export Citation Format

Share Document