scholarly journals A new dynamical proof of the Shmerkin–Wu theorem

2022 ◽  
Vol 18 (0) ◽  
pp. 1
Author(s):  
Tim Austin

<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M1">\begin{document}$ a &lt; b $\end{document}</tex-math></inline-formula> be multiplicatively independent integers, both at least <inline-formula><tex-math id="M2">\begin{document}$ 2 $\end{document}</tex-math></inline-formula>. Let <inline-formula><tex-math id="M3">\begin{document}$ A,B $\end{document}</tex-math></inline-formula> be closed subsets of <inline-formula><tex-math id="M4">\begin{document}$ [0,1] $\end{document}</tex-math></inline-formula> that are forward invariant under multiplication by <inline-formula><tex-math id="M5">\begin{document}$ a $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M6">\begin{document}$ b $\end{document}</tex-math></inline-formula> respectively, and let <inline-formula><tex-math id="M7">\begin{document}$ C : = A\times B $\end{document}</tex-math></inline-formula>. An old conjecture of Furstenberg asserted that any planar line <inline-formula><tex-math id="M8">\begin{document}$ L $\end{document}</tex-math></inline-formula> not parallel to either axis must intersect <inline-formula><tex-math id="M9">\begin{document}$ C $\end{document}</tex-math></inline-formula> in Hausdorff dimension at most <inline-formula><tex-math id="M10">\begin{document}$ \max\{\dim C,1\} - 1 $\end{document}</tex-math></inline-formula>. Two recent works by Shmerkin and Wu have given two different proofs of this conjecture. This note provides a third proof. Like Wu's, it stays close to the ergodic theoretic machinery that Furstenberg introduced to study such questions, but it uses less substantial background from ergodic theory. The same method is also used to re-prove a recent result of Yu about certain sequences of sums.</p>

2020 ◽  
pp. 1-19
Author(s):  
MAO SHINODA ◽  
MASAKI TSUKAMOTO

Furstenberg [Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Syst. Theory1 (1967), 1–49] calculated the Hausdorff and Minkowski dimensions of one-sided subshifts in terms of topological entropy. We generalize this to $\mathbb{Z}^{2}$ -subshifts. Our generalization involves mean dimension theory. We calculate the metric mean dimension and the mean Hausdorff dimension of $\mathbb{Z}^{2}$ -subshifts with respect to a subaction of $\mathbb{Z}$ . The resulting formula is quite analogous to Furstenberg’s theorem. We also calculate the rate distortion dimension of $\mathbb{Z}^{2}$ -subshifts in terms of Kolmogorov–Sinai entropy.


2010 ◽  
Vol 31 (4) ◽  
pp. 1095-1107 ◽  
Author(s):  
RYAN BRODERICK ◽  
LIOR FISHMAN ◽  
DMITRY KLEINBOCK

AbstractGiven an integer matrix M∈GLn(ℝ) and a point y∈ℝn/ℤn, consider the set S. G. Dani showed in 1988 that whenever M is semisimple and y∈ℚn/ℤn, the set $ \tilde E(M,y)$ has full Hausdorff dimension. In this paper we strengthen this result, extending it to arbitrary M∈GLn(ℝ)∩Mn×n(ℤ) and y∈ℝn/ℤn, and in fact replacing the sequence of powers of M by any lacunary sequence of (not necessarily integer) m×n matrices. Furthermore, we show that sets of the form $ \tilde E(M,y)$ and their generalizations always intersect with ‘sufficiently regular’ fractal subsets of ℝn. As an application, we give an alternative proof of a recent result [M. Einsiedler and J. Tseng. Badly approximable systems of affine forms, fractals, and Schmidt games. Preprint, arXiv:0912.2445] on badly approximable systems of affine forms.


Author(s):  
IGOR E. SHPARLINSKI

We obtain a lower bound on the largest prime factor of the denominator of rational numbers in the Cantor set. This gives a stronger version of a recent result of Schleischitz [‘On intrinsic and extrinsic rational approximation to Cantor sets’, Ergodic Theory Dyn. Syst. to appear] obtained via a different argument.


1997 ◽  
Vol 17 (6) ◽  
pp. 1449-1476 ◽  
Author(s):  
MARIUSZ URBAŃSKI

Let $h$ be the Hausdorff dimension of the Julia set of a rational function $T$ with no non-periodic recurrent critical points and let $m$ be the only $h$-conformal measure for $T$. We prove the existence of a $\sigma$-finite $T$-invariant measure $\mu$ equivalent with $m$. The measure $\mu$ is then proved to be ergodic and conservative and we study the set of those points whose all open neighborhoods have infinite measure $\mu$. Developing the concept of the inverse jump transformation we show that the packing and Hausdorff dimensions of the conformal measure are equal to $h$. We also provide some sufficient conditions for Hausdorff and box dimensions of the Julia set to be equal.


Author(s):  
Karl E. Petersen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document