scholarly journals Schmidt’s game, fractals, and orbits of toral endomorphisms

2010 ◽  
Vol 31 (4) ◽  
pp. 1095-1107 ◽  
Author(s):  
RYAN BRODERICK ◽  
LIOR FISHMAN ◽  
DMITRY KLEINBOCK

AbstractGiven an integer matrix M∈GLn(ℝ) and a point y∈ℝn/ℤn, consider the set S. G. Dani showed in 1988 that whenever M is semisimple and y∈ℚn/ℤn, the set $ \tilde E(M,y)$ has full Hausdorff dimension. In this paper we strengthen this result, extending it to arbitrary M∈GLn(ℝ)∩Mn×n(ℤ) and y∈ℝn/ℤn, and in fact replacing the sequence of powers of M by any lacunary sequence of (not necessarily integer) m×n matrices. Furthermore, we show that sets of the form $ \tilde E(M,y)$ and their generalizations always intersect with ‘sufficiently regular’ fractal subsets of ℝn. As an application, we give an alternative proof of a recent result [M. Einsiedler and J. Tseng. Badly approximable systems of affine forms, fractals, and Schmidt games. Preprint, arXiv:0912.2445] on badly approximable systems of affine forms.

2011 ◽  
Vol 150 (2) ◽  
pp. 215-226 ◽  
Author(s):  
YANN BUGEAUD ◽  
NIKOLAY MOSHCHEVITIN

AbstractWe establish that the set of pairs (α, β) of real numbers such that where ‖ · ‖ denotes the distance to the nearest integer, has full Hausdorff dimension in R2. Our proof rests on a method introduced by Peres and Schlag, that we further apply to various Littlewood-type problems.


1995 ◽  
Vol 15 (1) ◽  
pp. 77-97 ◽  
Author(s):  
Irene Hueter ◽  
Steven P. Lalley

Let A1, A2,…,Ak be a finite set of contractive, affine, invertible self-mappings of R2. A compact subset Λ of R2 is said to be self-affine with affinitiesA1, A2,…,Ak ifIt is known [8] that for any such set of contractive affine mappings there is a unique (compact) SA set with these affinities. When the affine mappings A1, A2,…,Ak are similarity transformations, the set Λ is said to be self-similar. Self-similar sets are well understood, at least when the images Ai(Λ) have ‘small’ overlap: there is a simple and explicit formula for the Hausdorff and box dimensions [12, 10]; these are always equal; and the δ-dimensional Hausdorff measure of such a set (where δ is the Hausdorff dimension) is always positive and finite.


2022 ◽  
Vol 18 (0) ◽  
pp. 1
Author(s):  
Tim Austin

<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M1">\begin{document}$ a &lt; b $\end{document}</tex-math></inline-formula> be multiplicatively independent integers, both at least <inline-formula><tex-math id="M2">\begin{document}$ 2 $\end{document}</tex-math></inline-formula>. Let <inline-formula><tex-math id="M3">\begin{document}$ A,B $\end{document}</tex-math></inline-formula> be closed subsets of <inline-formula><tex-math id="M4">\begin{document}$ [0,1] $\end{document}</tex-math></inline-formula> that are forward invariant under multiplication by <inline-formula><tex-math id="M5">\begin{document}$ a $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M6">\begin{document}$ b $\end{document}</tex-math></inline-formula> respectively, and let <inline-formula><tex-math id="M7">\begin{document}$ C : = A\times B $\end{document}</tex-math></inline-formula>. An old conjecture of Furstenberg asserted that any planar line <inline-formula><tex-math id="M8">\begin{document}$ L $\end{document}</tex-math></inline-formula> not parallel to either axis must intersect <inline-formula><tex-math id="M9">\begin{document}$ C $\end{document}</tex-math></inline-formula> in Hausdorff dimension at most <inline-formula><tex-math id="M10">\begin{document}$ \max\{\dim C,1\} - 1 $\end{document}</tex-math></inline-formula>. Two recent works by Shmerkin and Wu have given two different proofs of this conjecture. This note provides a third proof. Like Wu's, it stays close to the ergodic theoretic machinery that Furstenberg introduced to study such questions, but it uses less substantial background from ergodic theory. The same method is also used to re-prove a recent result of Yu about certain sequences of sums.</p>


2000 ◽  
Vol 43 (1) ◽  
pp. 60-62 ◽  
Author(s):  
Daniel R. Farkas ◽  
Peter A. Linnell

AbstractLet G be an arbitrary group and let U be a subgroup of the normalized units in ℤG. We show that if U contains G as a subgroup of finite index, then U = G. This result can be used to give an alternative proof of a recent result of Marciniak and Sehgal on units in the integral group ring of a crystallographic group.


2017 ◽  
Vol 39 (3) ◽  
pp. 638-657 ◽  
Author(s):  
TUSHAR DAS ◽  
LIOR FISHMAN ◽  
DAVID SIMMONS ◽  
MARIUSZ URBAŃSKI

We highlight a connection between Diophantine approximation and the lower Assouad dimension by using information about the latter to show that the Hausdorff dimension of the set of badly approximable points that lie in certain non-conformal fractals, known as self-affine sponges, is bounded below by the dynamical dimension of these fractals. For self-affine sponges with equal Hausdorff and dynamical dimensions, the set of badly approximable points has full Hausdorff dimension in the sponge. Our results, which are the first to advance beyond the conformal setting, encompass both the case of Sierpiński sponges/carpets (also known as Bedford–McMullen sponges/carpets) and the case of Barański carpets. We use the fact that the lower Assouad dimension of a hyperplane diffuse set constitutes a lower bound for the Hausdorff dimension of the set of badly approximable points in that set.


2019 ◽  
Vol 85 (1) ◽  
pp. 486-510
Author(s):  
RUPERT HÖLZL ◽  
WOLFGANG MERKLE ◽  
JOSEPH MILLER ◽  
FRANK STEPHAN ◽  
LIANG YU

AbstractWe prove that the continuous function${\rm{\hat \Omega }}:2^\omega \to $ that is defined via$X \mapsto \mathop \sum \limits_n 2^{ - K\left( {Xn} \right)} $ for all $X \in {2^\omega }$ is differentiable exactly at the Martin-Löf random reals with the derivative having value 0; that it is nowhere monotonic; and that $\mathop \smallint \nolimits _0^1{\rm{\hat{\Omega }}}\left( X \right)\,{\rm{d}}X$ is a left-c.e. $wtt$-complete real having effective Hausdorff dimension ${1 / 2}$.We further investigate the algorithmic properties of ${\rm{\hat{\Omega }}}$. For example, we show that the maximal value of ${\rm{\hat{\Omega }}}$ must be random, the minimal value must be Turing complete, and that ${\rm{\hat{\Omega }}}\left( X \right) \oplus X{ \ge _T}\emptyset \prime$ for every X. We also obtain some machine-dependent results, including that for every $\varepsilon > 0$, there is a universal machine V such that ${{\rm{\hat{\Omega }}}_V}$ maps every real X having effective Hausdorff dimension greater than ε to a real of effective Hausdorff dimension 0 with the property that $X{ \le _{tt}}{{\rm{\hat{\Omega }}}_V}\left( X \right)$; and that there is a real X and a universal machine V such that ${{\rm{\Omega }}_V}\left( X \right)$ is rational.


1966 ◽  
Vol 15 (1) ◽  
pp. 67-71 ◽  
Author(s):  
C. Sudler

In (7), Wright gives an enumerative proof of an identity algebraically equivalent to that of Jacobi, namelyHere, and in the sequel, products run from 1 to oo and sums from - oo to oo unless otherwise indicated. We give here a simplified version of his argument by working directly with (1), the substitution leading to equation (3) of his paper being omitted. We then supply an alternative proof of (1) by means of a generalisation of the Durfee square concept utilising the rectangle of dimensions v by v + r for fixed r and maximal v contained in the Ferrers graph of a partition.


2007 ◽  
Vol 49 (2) ◽  
pp. 333-344 ◽  
Author(s):  
YANN BUGEAUD ◽  
ANDREJ DUJELLA ◽  
MAURICE MIGNOTTE

AbstractIt is proven that ifk≥ 2 is an integer anddis a positive integer such that the product of any two distinct elements of the setincreased by 1 is a perfect square, thend= 4kord= 64k5−48k3+8k. Together with a recent result of Fujita, this shows that all Diophantine quadruples of the form {k− 1,k+ 1,c,d} are regular.


2019 ◽  
Vol 40 (12) ◽  
pp. 3217-3235 ◽  
Author(s):  
AYREENA BAKHTAWAR ◽  
PHILIP BOS ◽  
MUMTAZ HUSSAIN

Let $\unicode[STIX]{x1D6F9}:[1,\infty )\rightarrow \mathbb{R}_{+}$ be a non-decreasing function, $a_{n}(x)$ the $n$th partial quotient of $x$ and $q_{n}(x)$ the denominator of the $n$th convergent. The set of $\unicode[STIX]{x1D6F9}$-Dirichlet non-improvable numbers, $$\begin{eqnarray}G(\unicode[STIX]{x1D6F9}):=\{x\in [0,1):a_{n}(x)a_{n+1}(x)>\unicode[STIX]{x1D6F9}(q_{n}(x))\text{ for infinitely many }n\in \mathbb{N}\},\end{eqnarray}$$ is related with the classical set of $1/q^{2}\unicode[STIX]{x1D6F9}(q)$-approximable numbers ${\mathcal{K}}(\unicode[STIX]{x1D6F9})$ in the sense that ${\mathcal{K}}(3\unicode[STIX]{x1D6F9})\subset G(\unicode[STIX]{x1D6F9})$. Both of these sets enjoy the same $s$-dimensional Hausdorff measure criterion for $s\in (0,1)$. We prove that the set $G(\unicode[STIX]{x1D6F9})\setminus {\mathcal{K}}(3\unicode[STIX]{x1D6F9})$ is uncountable by proving that its Hausdorff dimension is the same as that for the sets ${\mathcal{K}}(\unicode[STIX]{x1D6F9})$ and $G(\unicode[STIX]{x1D6F9})$. This gives an affirmative answer to a question raised by Hussain et al [Hausdorff measure of sets of Dirichlet non-improvable numbers. Mathematika 64(2) (2018), 502–518].


2011 ◽  
Vol 95 (534) ◽  
pp. 407-413
Author(s):  
Li Zhou

In [1] Niven used the integralto give a well-known proof of the irrationality of π. Recently Zhou and Markov [2] used a recurrence relation satisfied by this integral to present an alternative proof which may be more direct than Niven's.Niven did not cite any references in [1] and thus the origin or Hn seems rather mysterious and ingenious. However if we heed Abel's advice to ‘study the masters’, we find that Hn emerged much more naturally from the great works of Lambert [3] and Hermite [4].


Sign in / Sign up

Export Citation Format

Share Document