scholarly journals Higher order strongly general convex functions and variational inequalities

2020 ◽  
Vol 5 (4) ◽  
pp. 3646-3663 ◽  
Author(s):  
Muhammad Aslam Noor ◽  
◽  
Khalida Inayat Noor
2020 ◽  
Vol 170 (1) ◽  
pp. 981-1064
Author(s):  
Muhammad Aslam Noor ◽  
Khalida Inayat Noor ◽  
Michael Th. Rassias

Abstract It is well known that general variational inequalities provide us with a unified, natural, novel and simple framework to study a wide class of unrelated problems, which arise in pure and applied sciences. In this paper, we present a number of new and known numerical techniques for solving general variational inequalities and equilibrium problems using various techniques including projection, Wiener-Hopf equations, dynamical systems, the auxiliary principle and the penalty function. General variational-like inequalities are introduced and investigated. Properties of higher order strongly general convex functions have been discussed. The auxiliary principle technique is used to suggest and analyze some iterative methods for solving higher order general variational inequalities. Some new classes of strongly exponentially general convex functions are introduced and discussed. Our proofs of convergence are very simple as compared with other methods. Our results present a significant improvement of previously known methods for solving variational inequalities and related optimization problems. Since the general variational inequalities include (quasi) variational inequalities and (quasi) implicit complementarity problems as special cases, these results continue to hold for these problems. Some numerical results are included to illustrate the efficiency of the proposed methods. Several open problems have been suggested for further research in these areas.


Author(s):  
Jia-Ding Cao ◽  
Heinz H. Gonska

AbstractDeVore-Gopengauz-type operators have attracted some interest over the recent years. Here we investigate their relationship to shape preservation. We construct certain positive convolution-type operators Hn, s, j which leave the cones of j-convex functions invariant and give Timan-type inequalities for these. We also consider Boolean sum modifications of the operators Hn, s, j show that they basically have the same shape preservation behavior while interpolating at the endpoints of [−1, 1], and also satisfy Telyakovskiῐ- and DeVore-Gopengauz-type inequalities involving the first and second order moduli of continuity, respectively. Our results thus generalize related results by Lorentz and Zeller, Shvedov, Beatson, DeVore, Yu and Leviatan.


Author(s):  
Muhammad Uzair Awan ◽  
Muhammad Zakria Javed ◽  
Michael Th. Rassias ◽  
Muhammad Aslam Noor ◽  
Khalida Inayat Noor

AbstractA new generalized integral identity involving first order differentiable functions is obtained. Using this identity as an auxiliary result, we then obtain some new refinements of Simpson type inequalities using a new class called as strongly (s, m)-convex functions of higher order of $$\sigma >0$$ σ > 0 . We also discuss some interesting applications of the obtained results in the theory of means. In last we present applications of the obtained results in obtaining Simpson-like quadrature formula.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Muhammad Adeel ◽  
Khuram Ali Khan ◽  
Ðilda Pečarić ◽  
Josip Pečarić

Abstract In this paper, Levinson type inequalities are studied for the class of higher order convex functions by using Abel–Gontscharoff interpolation. Cebyšev, Grüss, and Ostrowski-type new bounds are also found for the functionals involving data points of two types.


2021 ◽  
pp. 319-339
Author(s):  
Muhammad Aslam Noor ◽  
Khalida Inayat Noor

2007 ◽  
Vol 39 (01) ◽  
pp. 105-127
Author(s):  
Francisco Vera ◽  
James Lynch

Blackwell (1951), in his seminal work on comparison of experiments, ordered two experiments using a dilation ordering: one experiment, Y, is ‘more spread out’ in the sense of dilation than another one, X, if E(c(Y))≥E(c(X)) for all convex functions c. He showed that this ordering is equivalent to two other orderings, namely (i) a total time on test ordering and (ii) a martingale relationship E(Yʹ | Xʹ)=Xʹ, where (Xʹ,Yʹ) has a joint distribution with the same marginals as X and Y. These comparisons are generalized to balayage orderings that are defined in terms of generalized convex functions. These balayage orderings are equivalent to (i) iterated total integral of survival orderings and (ii) martingale-type orderings which we refer to as k-mart orderings. These comparisons can arise naturally in model fitting and data confidentiality contexts.


Sign in / Sign up

Export Citation Format

Share Document