shape preservation
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 10)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Vol 4 (3) ◽  
pp. 54
Author(s):  
Athanasios Argyropoulos ◽  
Pantelis N. Botsaris

Three-dimensional (3D) printing is a leading manufacturing technique in the medical field. The constantly improving quality of 3D printers has revolutionized the approach to new challenges in medicine for a wide range of applications including otoplasty, medical devices, and tissue engineering. The aim of this study is to provide a comprehensive overview of an artificial ear splint model applied to the human auricle for the treatment of stick-out protruding ears. The deformity of stick-out protruding ears remains a significant challenge, where the complex and distinctive shape preservation are key factors. To address this challenge, we have developed a protocol that involves photogrammetry techniques, reverse engineering technologies, a smart prototype design, and 3D printing processes. Specifically, we fabricated a 3D printed ear splint model via fused deposition modelling (FDM) technology by testing two materials, a thermoplastic polyester elastomer material (Z-Flex) and polycaprolactone (PCL 100). Our strategy affords a custom-made and patient-specific artificial ear aligner with mechanical properties that ensures sufficient preservation of the auricular shape by applying a force on the helix and antihelix and enables the ears to pin back to the head.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 338 ◽  
Author(s):  
Pakeeza Ashraf ◽  
Bushra Nawaz ◽  
Dumitru Baleanu ◽  
Kottakkaran Sooppy Nisar ◽  
Abdul Ghaffar ◽  
...  

Shape preservation has been the heart of subdivision schemes (SSs) almost from its origin, and several analyses of SSs have been established. Shape preservation properties are commonly used in SSs and various ways have been discovered to connect smooth curves/surfaces generated by SSs to applied geometry. With an eye on connecting the link between SSs and applied geometry, this paper analyzes the geometric properties of a ternary four-point rational interpolating subdivision scheme. These geometric properties include monotonicity-preservation, convexity-preservation, and curvature of the limit curve. Necessary conditions are derived on parameter and initial control points to ensure monotonicity and convexity preservation of the limit curve of the scheme. Furthermore, we analyze the curvature of the limit curve of the scheme for various choices of the parameter. To support our findings, we also present some examples and their graphical representation.


2020 ◽  
Vol 7 ◽  
Author(s):  
Pakeeza Ashraf ◽  
Mehak Sabir ◽  
Abdul Ghaffar ◽  
Kottakkaran Sooppy Nisar ◽  
Ilyas Khan

2020 ◽  
Vol 69 ◽  
pp. 24-46
Author(s):  
Pierre Cordesse ◽  
Ruben Di Battista ◽  
Quentin Chevalier ◽  
Lionel Matuszewski ◽  
Thibaut Ménard ◽  
...  

The purpose of this contribution is to derive a reduced-order two-phase flow model in- cluding interface subscale modeling through geometrical variables based on Stationary Action Principle (SAP) and Second Principle of Thermodynamics in the spirit of [6, 14]. The derivation is conducted in the disperse phase regime for the sake of clarity but the resulting paradigm can be used in a more general framework. One key issue is the definition of the proper potential and kinetic energies in the Lagrangian of the system based on geometrical variables (Interface area density, mean and Gauss curvatures...), which will drive the subscale kinematics and dissipation, and their coupling with large scales of the flow. While [14] relied on bubble pulsation, that is normal deformation of the interface with shape preservation related to pressure changes, we aim here at tackling inclusion deformation at constant volume, thus describing self-sustained oscillations. In order to identify the proper energies, we use Direct Numerical Simulations (DNS) of oscillating droplets using ARCHER code and recently devel- oped library, Mercur(v)e, for mean geometrical variable evaluation and analysis preserving topological invariants. This study is combined with historical analytical studies conducted in the small perturba- tion regime and shows that the proper potential energy is related to the surface difference compared to the spherical minimal surface. A geometrical quasi-invariant is also identified and a natural definition of subscale momentum is proposed. The set of Partial Differential Equations (PDEs) including the conservation equations as well as dissipation source terms are eventually derived leading to an original two-scale diffuse interface model involving geometrical variables.


Computation ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 1 ◽  
Author(s):  
Ikha Magdalena ◽  
Novry Erwina

In this paper, we study the maximum run-up of solitary waves on a sloping beach and over a reef through a non-hydrostatic model. We do a modification on the non-hydrostatic model derived by Stelling and Zijlema. The model is approximated by resolving the vertical fluid depth into two-layer system. In contrast to the two-layer model proposed by Stelling, here, we have a block of a tridiagonal matrix for the hydrodynamic pressure. The equations are then solved by applying a staggered finite volume method with predictor-corrector step. For validation, several test cases are presented. The first test is simulating the propagation of solitary waves over a flat bottom. Good results in amplitude and shape preservation are obtained. Furthermore, run-up simulations are conducted for solitary waves climbing up a sloping beach, following the experimental set-up by Synolakis. In this case, two simulations are performed with solitary waves of small and large amplitude. Again, good agreements are obtained, especially for the prediction of run-up height. Moreover, we validate our numerical scheme for wave run-up simulation over a reef, and the result confirms the experimental data.


2019 ◽  
Vol 490 (4) ◽  
pp. 5249-5269
Author(s):  
Sankalp Gilda ◽  
Zachary Slepian

ABSTRACT We propose a non-parametric method to denoise 1D stellar spectra based on wavelet shrinkage followed by adaptive Kalman thresholding. Wavelet shrinkage denoising involves applying the discrete wavelet transform (DWT) to the input signal, ‘shrinking’ certain frequency components in the transform domain, and then applying inverse DWT to the reduced components. The performance of this procedure is influenced by the choice of base wavelet, the number of decomposition levels, and the thresholding function. Typically, these parameters are chosen by ‘trial and error’, which can be strongly dependent on the properties of the data being denoised. We here introduce an adaptive Kalman-filter-based thresholding method that eliminates the need for choosing the number of decomposition levels. We use the ‘Haar’ wavelet basis, which we found to provide excellent filtering for 1D stellar spectra, at a low computational cost. We introduce various levels of Poisson noise into synthetic PHOENIX spectra, and test the performance of several common denoising methods against our own. It proves superior in terms of noise suppression and peak shape preservation. We expect it may also be of use in automatically and accurately filtering low signal-to-noise galaxy and quasar spectra obtained from surveys such as SDSS, Gaia, LSST, PESSTO, VANDELS, LEGA-C, and DESI.


2019 ◽  
Author(s):  
Damien Jefferies ◽  
Syma Khalid

AbstractOuter membrane vesicles (OMVs) are spherical liposomes that are secreted by almost all forms of Gram-negative bacteria. The nanospheres contribute to bacterial pathogenesis by trafficking molecular cargo from bacterial membranes to target cells at the host-pathogen interface. We have simulated the interaction of OMVs with host cell membranes to understand why OMV uptake depends on the length of constituent lipopolysaccharide macromolecules. Using coarse-grained molecular dynamics simulations, we show that lipopolysaccharide lipid length affects OMV shape at the host-pathogen interface: OMVs with long (smooth-type) lipopolysaccharide lipids retain their spherical shape when they interact with host cell membranes, whereas OMVs with shorter (rough-type) lipopolysaccharide lipids distort and spread over the host membrane surface. In addition, we show that OMVs preferentially coordinate domain-favoring ganglioside lipids within host membranes to enhance curvature and affect the local lipid composition. We predict that these differences in shape preservation affect OMV internalization on long timescales: spherical nanoparticles tend to be completely enveloped by host membranes, whereas low sphericity nanoparticles tend to remain on the surface of cells.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1369 ◽  
Author(s):  
Yueke Ming ◽  
Yugang Duan ◽  
Ben Wang ◽  
Hong Xiao ◽  
Xiaohui Zhang

Recently, 3D printing of fiber-reinforced composites has gained significant research attention. However, commercial utilization is limited by the low fiber content and poor fiber–resin interface. Herein, a novel 3D printing process to fabricate continuous fiber-reinforced thermosetting polymer composites (CFRTPCs) is proposed. In brief, the proposed process is based on the viscosity–temperature characteristics of the thermosetting epoxy resin (E-20). First, the desired 3D printing filament was prepared by impregnating a 3K carbon fiber with a thermosetting matrix at 130 °C. The adhesion and support required during printing were then provided by melting the resin into a viscous state in the heating head and rapidly cooling after pulling out from the printing nozzle. Finally, a powder compression post-curing method was used to accomplish the cross-linking reaction and shape preservation. Furthermore, the 3D-printed CFRTPCs exhibited a tensile strength and tensile modulus of 1476.11 MPa and 100.28 GPa, respectively, a flexural strength and flexural modulus of 858.05 MPa and 71.95 GPa, respectively, and an interlaminar shear strength of 48.75 MPa. Owing to its high performance and low concentration of defects, the proposed printing technique shows promise in further utilization and industrialization of 3D printing for different applications.


Sign in / Sign up

Export Citation Format

Share Document