scholarly journals $k$-fractional integral inequalities of Hadamard type for exponentially $(s,m)$-convex functions

2021 ◽  
Vol 6 (1) ◽  
pp. 882-892
Author(s):  
Atiq Ur Rehman ◽  
◽  
Ghulam Farid ◽  
Sidra Bibi ◽  
Chahn Yong Jung ◽  
...  
Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1753
Author(s):  
Saima Rashid ◽  
Aasma Khalid ◽  
Omar Bazighifan ◽  
Georgia Irina Oros

Integral inequalities for ℘-convex functions are established by using a generalised fractional integral operator based on Raina’s function. Hermite–Hadamard type inequality is presented for ℘-convex functions via generalised fractional integral operator. A novel parameterized auxiliary identity involving generalised fractional integral is proposed for differentiable mappings. By using auxiliary identity, we derive several Ostrowski type inequalities for functions whose absolute values are ℘-convex mappings. It is presented that the obtained outcomes exhibit classical convex and harmonically convex functions which have been verified using Riemann–Liouville fractional integral. Several generalisations and special cases are carried out to verify the robustness and efficiency of the suggested scheme in matrices and Fox–Wright generalised hypergeometric functions.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Chao Miao ◽  
Ghulam Farid ◽  
Hafsa Yasmeen ◽  
Yanhua Bian

This article deals with Hadamard inequalities for strongly s , m -convex functions using generalized Riemann–Liouville fractional integrals. Several generalized fractional versions of the Hadamard inequality are presented; we also provide refinements of many known results which have been published in recent years.


2021 ◽  
Vol 6 (6) ◽  
pp. 6377-6389
Author(s):  
Lanxin Chen ◽  
◽  
Junxian Zhang ◽  
Muhammad Shoaib Saleem ◽  
Imran Ahmed ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
M. Yussouf ◽  
G. Farid ◽  
K. A. Khan ◽  
Chahn Yong Jung

In this paper, generalized versions of Hadamard and Fejér–Hadamard type fractional integral inequalities are obtained. By using generalized fractional integrals containing Mittag-Leffler functions, some well-known results for convex and harmonically convex functions are generalized. The results of this paper are connected with various published fractional integral inequalities.


2022 ◽  
Vol 6 (1) ◽  
pp. 28
Author(s):  
Tao Yan ◽  
Ghulam Farid ◽  
Hafsa Yasmeen ◽  
Chahn Yong Jung

In the literature of mathematical inequalities, convex functions of different kinds are used for the extension of classical Hadamard inequality. Fractional integral versions of the Hadamard inequality are also studied extensively by applying Riemann–Liouville fractional integrals. In this article, we define (α,h−m)-convex function with respect to a strictly monotone function that unifies several types of convexities defined in recent past. We establish fractional integral inequalities for this generalized convexity via Riemann–Liouville fractional integrals. The outcomes of this work contain compact formulas for fractional integral inequalities which generate results for different kinds of convex functions.


Author(s):  
B. Bayraktar ◽  
S.I. Butt ◽  
Sh. Shaokat ◽  
J.E. Nápoles Valdés

The article introduces a new concept of convexity of a function: $(s,m_{1},m_{2})$-convex functions. This class of functions combines a number of convexity types found in the literature. Some properties of $(s,m_{1},m_{2})$-convexities are established and simple examples of functions belonging to this class are given. On the basis of the proved identity, new integral inequalities of the Hadamard type are obtained in terms of the fractional integral operator. It is shown that these results give us, in particular, generalizations of a number of results available in the literature.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 204
Author(s):  
Muhammad Bilal Khan ◽  
Hatim Ghazi Zaini ◽  
Savin Treanțǎ ◽  
Mohamed S. Soliman ◽  
Kamsing Nonlaopon

The concepts of convex and non-convex functions play a key role in the study of optimization. So, with the help of these ideas, some inequalities can also be established. Moreover, the principles of convexity and symmetry are inextricably linked. In the last two years, convexity and symmetry have emerged as a new field due to considerable association. In this paper, we study a new version of interval-valued functions (I-V·Fs), known as left and right χ-pre-invex interval-valued functions (LR-χ-pre-invex I-V·Fs). For this class of non-convex I-V·Fs, we derive numerous new dynamic inequalities interval Riemann–Liouville fractional integral operators. The applications of these repercussions are taken into account in a unique way. In addition, instructive instances are provided to aid our conclusions. Meanwhile, we’ll discuss a few specific examples that may be extrapolated from our primary findings.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Ghulam Farid ◽  
Yu-Ming Chu ◽  
Maja Andrić ◽  
Chahn Yong Jung ◽  
Josip Pečarić ◽  
...  

In this paper, the refinements of integral inequalities for all those types of convex functions are given which can be obtained from s , m -convex functions. These inequalities not only provide refinements of bounds for unified integral operators but also for various associated fractional integral operators containing Mittag–Leffler function. At the same time, presented results give generalizations of many known fractional integral inequalities.


Sign in / Sign up

Export Citation Format

Share Document