scholarly journals A relaxed generalized Newton iteration method for generalized absolute value equations

2021 ◽  
Vol 6 (2) ◽  
pp. 1258-1275
Author(s):  
Yang Cao ◽  
◽  
Quan Shi ◽  
Sen-Lai Zhu
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Cui-Xia Li ◽  
Shi-Liang Wu

Abstract In this paper, based on the shift splitting technique, a shift splitting (SS) iteration method is presented to solve the generalized absolute value equations. Convergence conditions of the SS method are discussed in detail when the involved matrices are some special matrices. Finally, numerical experiments show the effectiveness of the proposed method.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Lin Zheng

AbstractIn this paper, we present the Picard-HSS-SOR iteration method for finding the solution of the absolute value equation (AVE), which is more efficient than the Picard-HSS iteration method for AVE. The convergence results of the Picard-HSS-SOR iteration method are proved under certain assumptions imposed on the involved parameter. Numerical experiments demonstrate that the Picard-HSS-SOR iteration method for solving absolute value equations is feasible and effective.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Lei Shi ◽  
Javed Iqbal ◽  
Muhammad Arif ◽  
Alamgir Khan

In this paper, we suggest a Newton-type method for solving the system of absolute value equations. This new method is a two-step method with the generalized Newton method as predictor. Convergence of the proposed method is proved under some suitable conditions. At the end, we take several numerical examples to show that the new method is very effective.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Xiangshun Li ◽  
Di Wei ◽  
Cheng Lei ◽  
Zhiang Li ◽  
Wenlin Wang

Independent Component Analysis (ICA), a type of typical data-driven fault detection techniques, has been widely applied for monitoring industrial processes. FastICA is a classical algorithm of ICA, which extracts independent components by using the Newton iteration method. However, the choice of the initial iterative point of Newton iteration method is difficult; sometimes, selection of different initial iterative points tends to show completely different effects for fault detection. So far, there is still no good strategy to get an ideal initial iterative point for ICA. To solve this problem, a modified ICA algorithm based on biogeography-based optimization (BBO) called BBO-ICA is proposed for the purpose of multivariate statistical process monitoring. The Newton iteration method is replaced with BBO here for extracting independent components. BBO is a novel and effective optimization method to search extremes or maximums. Comparing with the traditional intelligent optimization algorithm of particle swarm optimization (PSO) and so on, BBO behaves with stronger capability and accuracy of searching for solution space. Moreover, numerical simulations are finished with the platform of DAMADICS. Results demonstrate the practicability and effectiveness of BBO-ICA. The proposed BBO-ICA shows better performance of process monitoring than FastICA and PSO-ICA for DAMADICS.


Sign in / Sign up

Export Citation Format

Share Document