scholarly journals Bounds of modified Sombor index, spectral radius and energy

2021 ◽  
Vol 6 (10) ◽  
pp. 11263-11274
Author(s):  
Yufei Huang ◽  
◽  
Hechao Liu ◽  

<abstract><p>Let $ G $ be a simple graph with edge set $ E(G) $. The modified Sombor index is defined as $ ^{m}SO(G) = \sum\limits_{uv\in E(G)}\frac{1}{\sqrt{d_{u}^{2}~~+~~d_{v}^{2}}} $, where $ d_{u} $ (resp. $ d_{v} $) denotes the degree of vertex $ u $ (resp. $ v $). In this paper, we determine some bounds for the modified Sombor indices of graphs with given some parameters (e.g., maximum degree $ \Delta $, minimum degree $ \delta $, diameter $ d $, girth $ g $) and the Nordhaus-Gaddum-type results. We also obtain the relationship between modified Sombor index and some other indices. At last, we obtain some bounds for the modified spectral radius and energy.</p></abstract>

1980 ◽  
Vol 32 (6) ◽  
pp. 1325-1332 ◽  
Author(s):  
J. A. Bondy ◽  
R. C. Entringer

The relationship between the lengths of cycles in a graph and the degrees of its vertices was first studied in a general context by G. A. Dirac. In [5], he proved that every 2-connected simple graph on n vertices with minimum degree d contains a cycle of length at least min{2d, n};. Dirac's theorem was subsequently strengthened in various directions in [7], [6], [13], [12], [2], [1], [11], [8], [14], [15] and [16].Our aim here is to investigate another aspect of this relationship, namely how the lengths of the cycles in a 2-connected graph depend on the maximum degree. Let us denote by ƒ(n, d) the largest integer k such that every 2-connected simple graph on n vertices with maximum degree d contains a cycle of length at least k. We prove in Section 2 that, for d ≧ 3 and n ≧ d + 2,


Filomat ◽  
2011 ◽  
Vol 25 (3) ◽  
pp. 29-42 ◽  
Author(s):  
Shilin Wang ◽  
Zhou Bo ◽  
Nenad Trinajstic

The sum-connectivity index of a simple graph G is defined in mathematical chemistry as R+(G) = ? uv?E(G)(du+dv)?1/2, where E(G) is the edge set of G and du is the degree of vertex u in G. We give a best possible lower bound for the sum-connectivity index of a graph (a triangle-free graph, respectively) with n vertices and minimum degree at least two and characterize the extremal graphs, where n ? 11.


Filomat ◽  
2014 ◽  
Vol 28 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Francesco Belardo

A graph is said to be (?,?)-bidegreed if vertices all have one of two possible degrees: the maximum degree ? or the minimum degree ?, with ? ? ?. We show that in the set of connected (?,1)- bidegreed graphs, other than trees, with prescribed degree sequence, the graphs minimizing the adjacency matrix spectral radius cannot have vertices adjacent to ? - 1 vertices of degree 1, that is, there are not any hanging trees. Further we consider the limit point for the spectral radius of (?,1)-bidegreed graphs when degree ? vertices are inserted in each edge between any two degree ? vertices.


Filomat ◽  
2016 ◽  
Vol 30 (8) ◽  
pp. 2111-2120 ◽  
Author(s):  
Kinkar Das ◽  
Kexiang Xu ◽  
Jinlan Wang

Let G=(V,E) be a simple graph of order n and size m with maximum degree ? and minimum degree ?. The inverse degree of a graph G with no isolated vertices is defined as ID(G) = ?n,i=1 1/di, where di is the degree of the vertex vi?V(G). In this paper, we obtain several lower and upper bounds on ID(G) of graph G and characterize graphs for which these bounds are best possible. Moreover, we compare inverse degree ID(G) with topological indices (GA1-index, ABC-index, Kf-index) of graphs.


Filomat ◽  
2016 ◽  
Vol 30 (6) ◽  
pp. 1625-1632 ◽  
Author(s):  
Junfeng Du ◽  
Jianhua Tu

Graph invariants, based on the distances between the vertices of a graph, are widely used in theoretical chemistry. Recently, Gutman, Feng and Yu (Transactions on Combinatorics, 01 (2012) 27- 40) introduced the degree resistance distance of a graph G, which is defined as DR(G) = ?{u,v}?V(G)[dG(u)+dG(v)]RG(u,v), where dG(u) is the degree of vertex u of the graph G, and RG(u, v) denotes the resistance distance between the vertices u and v of the graph G. Further, they characterized n-vertex unicyclic graphs having minimum and second minimum degree resistance distance. In this paper, we characterize n-vertex bicyclic graphs having maximum degree resistance distance.


10.37236/3821 ◽  
2014 ◽  
Vol 21 (3) ◽  
Author(s):  
R. Vandell ◽  
M. Walsh ◽  
W. D. Weakley

Let $G$ be a finite simple graph of order $n$, maximum degree $\Delta$, and minimum degree $\delta$. A compact regularization of $G$ is a $\Delta$-regular graph $H$ of which $G$ is an induced subgraph: $H$ is symmetric if every automorphism of $G$ can be extended to an automorphism of $H$. The index $|H:G|$ of a regularization $H$ of $G$ is the ratio $|V(H)|/|V(G)|$. Let $\mbox{mcr}(G)$ denote the index of a minimum compact regularization of $G$ and let $\mbox{mcsr}(G)$ denote the index of a minimum compact symmetric regularization of $G$.Erdős and Kelly proved that every graph $G$ has a compact regularization and $\mbox{mcr}(G) \leq 2$. Building on a result of König, Chartrand and Lesniak showed that every graph has a compact symmetric regularization and $\mbox{mcsr}(G) \leq 2^{\Delta - \delta}$.  Using a partial Cartesian product construction, we improve this to $\mbox{mcsr}(G) \leq \Delta - \delta + 2$ and give examples to show this bound cannot be reduced below $\Delta - \delta + 1$.


Author(s):  
Guowei Dai ◽  
Zan-Bo Zhang ◽  
Yicheng Hang ◽  
Xiaoyan Zhang

A spanning subgraph of a graph $G$ is called a path-factor of $G$ if its each component is a path. A path-factor is called a $\mathcal{P}_{\geq k}$-factor of $G$ if its each component admits at least $k$ vertices, where $k\geq2$. Zhang and Zhou [\emph{Discrete Mathematics}, \textbf{309}, 2067-2076 (2009)] defined the concept of $\mathcal{P}_{\geq k}$-factor covered graphs, i.e., $G$ is called a $\mathcal{P}_{\geq k}$-factor covered graph if it has a $\mathcal{P}_{\geq k}$-factor covering $e$ for any $e\in E(G)$. In this paper, we firstly obtain a minimum degree condition for a planar graph being a $\mathcal{P}_{\geq 2}$-factor and $\mathcal{P}_{\geq 3}$-factor covered graph, respectively. Secondly, we investigate the relationship between the maximum degree of any pairs of non-adjacent vertices and $\mathcal{P}_{\geq k}$-factor covered graphs, and obtain a sufficient condition for the existence of $\mathcal{P}_{\geq2}$-factor and $\mathcal{P}_{\geq 3}$-factor covered graphs, respectively.


2014 ◽  
Vol 315-316 ◽  
pp. 128-134 ◽  
Author(s):  
O.V. Borodin ◽  
A.O. Ivanova ◽  
A.V. Kostochka

2018 ◽  
Vol 18 (01) ◽  
pp. 1850001
Author(s):  
NAOKI TAKEUCHI ◽  
SATOSHI FUJITA

Scale-free networks have several favorable properties as the topology of interconnection networks such as the short diameter and the quick message propagation. In this paper, we propose a method to construct scale-free networks in a semi-deterministic manner. The proposed algorithm extends the Bulut's algorithm for constructing scale-free networks with designated minimum degree k and maximum degree m, in such a way that: (1) it determines the ideal number of edges derived from the ideal degree distribution; and (2) after connecting each new node to k existing nodes as in the Bulut’s algorithm, it adjusts the number of edges to the ideal value by conducting add/removal of edges. We prove that such an adjustment is always possible if the number of nodes in the network exceeds [Formula: see text]. The performance of the algorithm is experimentally evaluated.


10.37236/266 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Tom Rackham

Let $G$ be a simple graph of maximum degree $\Delta \geq 3$, not containing $K_{\Delta + 1}$, and ${\cal L}$ a list assignment to $V(G)$ such that $|{\cal L}(v)| = \Delta$ for all $v \in V(G)$. Given a set $P \subset V(G)$ of pairwise distance at least $d$ then Albertson, Kostochka and West (2004) and Axenovich (2003) have shown that every ${\cal L}$-precolouring of $P$ extends to a ${\cal L}$-colouring of $G$ provided $d \geq 8$. Let $K_{\Delta + 1}^-$ denote the graph $K_{\Delta + 1}$ with one edge removed. In this paper, we consider the problem above and the effect on the pairwise distance required when we additionally forbid either $K_{\Delta + 1}^-$ or $K_{\Delta}$ as a subgraph of $G$. We have the corollary that an extra assumption of 3-edge-connectivity in the above result is sufficient to reduce this distance from $8$ to $4$. This bound is sharp with respect to both the connectivity and distance. In particular, this corrects the results of Voigt (2007, 2008) for which counterexamples are given.


Sign in / Sign up

Export Citation Format

Share Document