scholarly journals A Note on $K_{\Delta+1}^-$-Free Precolouring with $\Delta$ Colours

10.37236/266 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Tom Rackham

Let $G$ be a simple graph of maximum degree $\Delta \geq 3$, not containing $K_{\Delta + 1}$, and ${\cal L}$ a list assignment to $V(G)$ such that $|{\cal L}(v)| = \Delta$ for all $v \in V(G)$. Given a set $P \subset V(G)$ of pairwise distance at least $d$ then Albertson, Kostochka and West (2004) and Axenovich (2003) have shown that every ${\cal L}$-precolouring of $P$ extends to a ${\cal L}$-colouring of $G$ provided $d \geq 8$. Let $K_{\Delta + 1}^-$ denote the graph $K_{\Delta + 1}$ with one edge removed. In this paper, we consider the problem above and the effect on the pairwise distance required when we additionally forbid either $K_{\Delta + 1}^-$ or $K_{\Delta}$ as a subgraph of $G$. We have the corollary that an extra assumption of 3-edge-connectivity in the above result is sufficient to reduce this distance from $8$ to $4$. This bound is sharp with respect to both the connectivity and distance. In particular, this corrects the results of Voigt (2007, 2008) for which counterexamples are given.


10.37236/7353 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Jinko Kanno ◽  
Songling Shan

Let $G$ be a simple graph, and let $\Delta(G)$ and $\chi'(G)$ denote the maximum degree and chromatic index of $G$, respectively. Vizing proved that $\chi'(G)=\Delta(G)$ or $\chi'(G)=\Delta(G)+1$. We say $G$ is $\Delta$-critical if $\chi'(G)=\Delta(G)+1$ and $\chi'(H)<\chi'(G)$ for every proper subgraph $H$ of $G$. In 1968, Vizing conjectured that if $G$ is a $\Delta$-critical graph, then  $G$ has a 2-factor. Let $G$ be an $n$-vertex $\Delta$-critical graph. It was proved that if $\Delta(G)\ge n/2$, then $G$ has a 2-factor; and that if $\Delta(G)\ge 2n/3+13$, then $G$  has a hamiltonian cycle, and thus a 2-factor. It is well known that every 2-tough graph with at least three vertices has a 2-factor. We investigate the existence of a 2-factor in a $\Delta$-critical graph under "moderate" given toughness and  maximum degree conditions. In particular, we show that  if $G$ is an  $n$-vertex $\Delta$-critical graph with toughness at least 3/2 and with maximum degree at least $n/3$, then $G$ has a 2-factor. We also construct a family of graphs that have order $n$, maximum degree $n-1$, toughness at least $3/2$, but have no 2-factor. This implies that the $\Delta$-criticality in the result is needed. In addition, we develop new techniques in proving the existence of 2-factors in graphs.



2017 ◽  
Vol 48 (2) ◽  
pp. 135-147 ◽  
Author(s):  
Seyed Mahmoud Sheikholeslami ◽  
Rana Khoeilar ◽  
Leila Asgharsharghi

Let $G=(V,E)$ be a finite and simple graph of order $n$ and maximum degree $\Delta$. A signed strong Roman dominating function (abbreviated SStRDF) on a graph $G$ is a function $f:V\to \{-1,1,2,\ldots,\lceil\frac{\Delta}{2}\rceil+1\}$ satisfying the conditions that (i) for every vertex $v$ of $G$, $\sum_{u\in N[v]} f(u)\ge 1$, where $N[v]$ is the closed neighborhood of $v$ and (ii) every vertex $v$ for which $f(v)=-1$ is adjacent to at least one vertex $u$ for which $f(u)\ge 1+\lceil\frac{1}{2}|N(u)\cap V_{-1}|\rceil$, where $V_{-1}=\{v\in V \mid f(v)=-1\}$. The minimum of the values $\sum_{v\in V} f(v)$, taken over all signed strong Roman dominating functions $f$ of $G$, is called the signed strong Roman domination number of $G$ and is denoted by $\gamma_{ssR}(G)$. In this paper we initiate the study of the signed strong Roman domination in graphs and present some (sharp) bounds for this parameter.



2021 ◽  
Vol 6 (10) ◽  
pp. 11263-11274
Author(s):  
Yufei Huang ◽  
◽  
Hechao Liu ◽  

<abstract><p>Let $ G $ be a simple graph with edge set $ E(G) $. The modified Sombor index is defined as $ ^{m}SO(G) = \sum\limits_{uv\in E(G)}\frac{1}{\sqrt{d_{u}^{2}~~+~~d_{v}^{2}}} $, where $ d_{u} $ (resp. $ d_{v} $) denotes the degree of vertex $ u $ (resp. $ v $). In this paper, we determine some bounds for the modified Sombor indices of graphs with given some parameters (e.g., maximum degree $ \Delta $, minimum degree $ \delta $, diameter $ d $, girth $ g $) and the Nordhaus-Gaddum-type results. We also obtain the relationship between modified Sombor index and some other indices. At last, we obtain some bounds for the modified spectral radius and energy.</p></abstract>



2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Gordana Manić ◽  
Yoshiko Wakabayashi

International audience We consider the problems of finding the maximum number of vertex-disjoint triangles (VTP) and edge-disjoint triangles (ETP) in a simple graph. Both problems are NP-hard. The algorithm with the best approximation guarantee known so far for these problems has ratio $3/2 + ɛ$, a result that follows from a more general algorithm for set packing obtained by Hurkens and Schrijver in 1989. We present improvements on the approximation ratio for restricted cases of VTP and ETP that are known to be APX-hard: we give an approximation algorithm for VTP on graphs with maximum degree 4 with ratio slightly less than 1.2, and for ETP on graphs with maximum degree 5 with ratio 4/3. We also present an exact linear-time algorithm for VTP on the class of indifference graphs.



1980 ◽  
Vol 32 (6) ◽  
pp. 1325-1332 ◽  
Author(s):  
J. A. Bondy ◽  
R. C. Entringer

The relationship between the lengths of cycles in a graph and the degrees of its vertices was first studied in a general context by G. A. Dirac. In [5], he proved that every 2-connected simple graph on n vertices with minimum degree d contains a cycle of length at least min{2d, n};. Dirac's theorem was subsequently strengthened in various directions in [7], [6], [13], [12], [2], [1], [11], [8], [14], [15] and [16].Our aim here is to investigate another aspect of this relationship, namely how the lengths of the cycles in a 2-connected graph depend on the maximum degree. Let us denote by ƒ(n, d) the largest integer k such that every 2-connected simple graph on n vertices with maximum degree d contains a cycle of length at least k. We prove in Section 2 that, for d ≧ 3 and n ≧ d + 2,



2018 ◽  
Vol 10 (02) ◽  
pp. 1850018
Author(s):  
Yafang Hu ◽  
Weifan Wang

A [Formula: see text]-distance vertex-distinguishing total coloring of a graph [Formula: see text] is a proper total coloring of [Formula: see text] such that any pair of vertices at distance [Formula: see text] have distinct sets of colors. The [Formula: see text]-distance vertex-distinguishing total chromatic number [Formula: see text] of [Formula: see text] is the minimum number of colors needed for a [Formula: see text]-distance vertex-distinguishing total coloring of [Formula: see text]. In this paper, we determine the [Formula: see text]-distance vertex-distinguishing total chromatic number of some graphs such as paths, cycles, wheels, trees, unicycle graphs, [Formula: see text], and [Formula: see text]. We conjecture that every simple graph [Formula: see text] with maximum degree [Formula: see text] satisfies [Formula: see text].



2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Enqiang Zhu ◽  
Yongsheng Rao

A total k-coloring of a graph is an assignment of k colors to its vertices and edges such that no two adjacent or incident elements receive the same color. The total coloring conjecture (TCC) states that every simple graph G has a total ΔG+2-coloring, where ΔG is the maximum degree of G. This conjecture has been confirmed for planar graphs with maximum degree at least 7 or at most 5, i.e., the only open case of TCC is that of maximum degree 6. It is known that every planar graph G of ΔG≥9 or ΔG∈7,8 with some restrictions has a total ΔG+1-coloring. In particular, in (Shen and Wang, 2009), the authors proved that every planar graph with maximum degree 6 and without 4-cycles has a total 7-coloring. In this paper, we improve this result by showing that every diamond-free and house-free planar graph of maximum degree 6 is totally 7-colorable if every 6-vertex is not incident with two adjacent four cycles or three cycles of size p,q,ℓ for some p,q,ℓ∈3,4,4,3,3,4.



Author(s):  
H. P. Yap ◽  
K. H. Chew

AbstractWe prove Theorem 1: suppose G is a simple graph of order n having Δ(G) = n − k where k ≥ 5 and n ≥ max (13, 3k −3). If G contains an independent set of k − 3 vertices, then the TCC (Total Colouring Conjecture) is true. Applying Theorem 1, we also prove that the TCC is true for any simple graph G of order n having Δ(G) = n −5. The latter result together with some earlier results confirm that the TCC is true for all simple graphs whose maximum degree is at most four and for all simple graphs of order n having maximum degree at least n − 5.



2019 ◽  
Vol 11 (01) ◽  
pp. 1950014
Author(s):  
Radhakrishnan Vignesh ◽  
Jayabalan Geetha ◽  
Kanagasabapathi Somasundaram

A total coloring of a graph [Formula: see text] is an assignment of colors to the elements of the graph [Formula: see text] such that no adjacent vertices and edges receive the same color. The total chromatic number of a graph [Formula: see text], denoted by [Formula: see text], is the minimum number of colors that suffice in a total coloring. Behzad and Vizing conjectured that for any simple graph [Formula: see text], [Formula: see text], where [Formula: see text] is the maximum degree of [Formula: see text]. In this paper, we prove the tight bound of the total coloring conjecture for the three types of corona products (vertex, edge and neighborhood) of graphs.



1996 ◽  
Vol 5 (1) ◽  
pp. 15-28 ◽  
Author(s):  
Keith Edwards

A harmonious colouring of a simple graph G is a proper vertex colouring such that each pair of colours appears together on at most one edge. The harmonious chromatic number h(G) is the least number of colours in such a colouring. Let d be a fixed positive integer. We show that there is a natural number N(d) such that if T is any tree with m ≥ N(d) edges and maximum degree at most d, then the harmonious chromatic number h(T) is k or k + 1, where k is the least positive integer such that . We also give a polynomial time algorithm for determining the harmonious chromatic number of a tree with maximum degree at most d.



Sign in / Sign up

Export Citation Format

Share Document