scholarly journals Analysis of directional higher order jump discontinuities with trigonometric shearlets

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Kevin Schober ◽  
Jürgen Prestin

<p style='text-indent:20px;'>In a recent article, we showed that trigonometric shearlets are able to detect directional step discontinuities along edges of periodic characteristic functions. In this paper, we extend these results to bivariate periodic functions which have jump discontinuities in higher order directional derivatives along edges. In order to prove suitable upper and lower bounds for the shearlet coefficients, we need to generalize the results about localization- and orientation-dependent decay properties of the corresponding inner products of trigonometric shearlets and the underlying periodic functions.</p>

2021 ◽  
Vol 33 (5) ◽  
pp. 1179-1205
Author(s):  
Piotr Beben ◽  
Jelena Grbić

Abstract Using the combinatorics of the underlying simplicial complex K, we give various upper and lower bounds for the Lusternik–Schnirelmann (LS) category of moment-angle complexes 𝒵 K {\mathcal{Z}_{K}} . We describe families of simplicial complexes and combinatorial operations which allow for a systematic description of the LS-category. In particular, we characterize the LS-category of moment-angle complexes 𝒵 K {\mathcal{Z}_{K}} over triangulated d-manifolds K for d ≤ 2 {d\leq 2} , as well as higher-dimensional spheres built up via connected sum, join, and vertex doubling operations. We show that the LS-category closely relates to vanishing of Massey products in H * ⁢ ( 𝒵 K ) {H^{*}(\mathcal{Z}_{K})} , and through this connection we describe first structural properties of Massey products in moment-angle manifolds. Some of the further applications include calculations of the LS-category and the description of conditions for vanishing of Massey products for moment-angle manifolds over fullerenes, Pogorelov polytopes and k-neighborly complexes, which double as important examples of hyperbolic manifolds.


2009 ◽  
Vol 19 (06) ◽  
pp. 595-615 ◽  
Author(s):  
MANUEL ABELLANAS ◽  
PROSENJIT BOSE ◽  
JESÚS GARCÍA ◽  
FERRAN HURTADO ◽  
CARLOS M. NICOLÁS ◽  
...  

Given a set P of n points in the plane, the order-k Delaunay graph is a graph with vertex set P and an edge exists between two points p, q ∈ P when there is a circle through p and q with at most k other points of P in its interior. We provide upper and lower bounds on the number of edges in an order-k Delaunay graph. We study the combinatorial structure of the set of triangulations that can be constructed with edges of this graph. Furthermore, we show that the order-k Delaunay graph is connected under the flip operation when k ≤ 1 but not necessarily connected for other values of k. If P is in convex position then the order-k Delaunay graph is connected for all k ≥ 0. We show that the order-k Gabriel graph, a subgraph of the order-k Delaunay graph, is Hamiltonian for k ≥ 15. Finally, the order-k Delaunay graph can be used to efficiently solve a coloring problem with applications to frequency assignments in cellular networks.


2002 ◽  
Vol 14 (2) ◽  
pp. 241-301 ◽  
Author(s):  
Michael Schmitt

In a great variety of neuron models, neural inputs are combined using the summing operation. We introduce the concept of multiplicative neural networks that contain units that multiply their inputs instead of summing them and thus allow inputs to interact nonlinearly. The class of multiplicative neural networks comprises such widely known and well-studied network types as higher-order networks and product unit networks. We investigate the complexity of computing and learning for multiplicative neural networks. In particular, we derive upper and lower bounds on the Vapnik-Chervonenkis (VC) dimension and the pseudo-dimension for various types of networks with multiplicative units. As the most general case, we consider feedforward networks consisting of product and sigmoidal units, showing that their pseudo-dimension is bounded from above by a polynomial with the same order of magnitude as the currently best-known bound for purely sigmoidal networks. Moreover, we show that this bound holds even when the unit type, product or sigmoidal, may be learned. Crucial for these results are calculations of solution set components bounds for new network classes. As to lower bounds, we construct product unit networks of fixed depth with super-linear VC dimension. For sigmoidal networks of higher order, we establish polynomial bounds that, in contrast to previous results, do not involve any restriction of the network order. We further consider various classes of higher-order units, also known as sigma-pi units, that are characterized by connectivity constraints. In terms of these, we derive some asymptotically tight bounds. Multiplication plays an important role in both neural modeling of biological behavior and computing and learning with artificial neural networks. We briefly survey research in biology and in applications where multiplication is considered an essential computational element. The results we present here provide new tools for assessing the impact of multiplication on the computational power and the learning capabilities of neural networks.


Fractals ◽  
2004 ◽  
Vol 12 (01) ◽  
pp. 23-32 ◽  
Author(s):  
MARK NABER

A distributed order fractional diffusion equation is considered. Distributed order derivatives are fractional derivatives that have been integrated over the order of the derivative within a given range. In this paper, sub-diffusive cases are considered. That is, the order of the time derivative ranges from zero to one. The equation is solved for Dirichlet, Neumann and Cauchy boundary conditions. The time dependence for each of the three cases is found to be a functional of the diffusion parameter. This functional is shown to have decay properties. Upper and lower bounds are computed for the functional. Examples are also worked out for comparative decay rates.


Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal A. Ganie ◽  
Yilun Shang

The generalized distance matrix D α ( G ) of a connected graph G is defined as D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where 0 ≤ α ≤ 1 , D ( G ) is the distance matrix and T r ( G ) is the diagonal matrix of the node transmissions. In this paper, we extend the concept of energy to the generalized distance matrix and define the generalized distance energy E D α ( G ) . Some new upper and lower bounds for the generalized distance energy E D α ( G ) of G are established based on parameters including the Wiener index W ( G ) and the transmission degrees. Extremal graphs attaining these bounds are identified. It is found that the complete graph has the minimum generalized distance energy among all connected graphs, while the minimum is attained by the star graph among trees of order n.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Hui Lei ◽  
Gou Hu ◽  
Zhi-Jie Cao ◽  
Ting-Song Du

Abstract The main aim of this paper is to establish some Fejér-type inequalities involving hypergeometric functions in terms of GA-s-convexity. For this purpose, we construct a Hadamard k-fractional identity related to geometrically symmetric mappings. Moreover, we give the upper and lower bounds for the weighted inequalities via products of two different mappings. Some applications of the presented results to special means are also provided.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 512
Author(s):  
Maryam Baghipur ◽  
Modjtaba Ghorbani ◽  
Hilal A. Ganie ◽  
Yilun Shang

The signless Laplacian reciprocal distance matrix for a simple connected graph G is defined as RQ(G)=diag(RH(G))+RD(G). Here, RD(G) is the Harary matrix (also called reciprocal distance matrix) while diag(RH(G)) represents the diagonal matrix of the total reciprocal distance vertices. In the present work, some upper and lower bounds for the second-largest eigenvalue of the signless Laplacian reciprocal distance matrix of graphs in terms of various graph parameters are investigated. Besides, all graphs attaining these new bounds are characterized. Additionally, it is inferred that among all connected graphs with n vertices, the complete graph Kn and the graph Kn−e obtained from Kn by deleting an edge e have the maximum second-largest signless Laplacian reciprocal distance eigenvalue.


Sign in / Sign up

Export Citation Format

Share Document