Quantitative Characterization of Oligocene-Miocene Carbonate Mound Morphology From 3D Seismic Data: Applications to Geologic Modeling, East Java Basin, Indonesia

Author(s):  
A.S. Ruf ◽  
J.A. Simo ◽  
T.M. Hughes
First Break ◽  
2016 ◽  
Vol 34 (2) ◽  
Author(s):  
Matthew Heath-Clarke ◽  
Kevin Taylor ◽  
David Harrison ◽  
Anthony Fogg ◽  
Fred Hughes ◽  
...  

2015 ◽  
Vol 3 (2) ◽  
pp. SM37-SM46 ◽  
Author(s):  
Rui Zhang ◽  
Donald Vasco ◽  
Thomas M. Daley ◽  
William Harbert

The In Salah carbon dioxide storage project in Algeria has injected more than 3 million tons of carbon dioxide into a water-filled tight-sand formation. During injection, interferometric synthetic aperture radar (InSAR) reveals a double-lobed pattern of up to a 20-mm surface uplift above the horizontal leg of an injection well. Interpretation of 3D seismic data reveals the presence of a subtle linear push-down feature located along the InSAR determined surface depression between the two lobes, which we interpreted to have to be caused by anomalously lower velocity from the fracture zone and the presence of [Formula: see text] displacing brine in this feature. To enhance the seismic interpretation, we calculated many poststack seismic attributes, including positive and negative curvatures as well as ant track, from the 3D seismic data. The maximum positive curvature attributes and ant track found the clearest linear features, with two parallel trends, which agreed well with the ant-track volume and the InSAR observations of the depression zone. The seismic attributes provided a plausible characterization of the fracture zone extent, including height, width, and length (80, 350, and 3500 m, respectively), providing important information for further study of fracture behavior due to the [Formula: see text] injection at In Salah. We interpreted the pattern of depression between two surface-deformation lobes as caused by the opening of a subvertical fracture or damage zone at depth above the injection interval, which allowed injected [Formula: see text] to migrate upward. Our analysis corroborated previous interpretation of surface uplift as due to the injection of [Formula: see text] in this well.


Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. IM1-IM13
Author(s):  
Hongtao Zhu ◽  
Zhiwei Zeng ◽  
Hongliu Zeng ◽  
Changgui Xu

Volcanic effusive facies (VEF) and volcanic conduit facies (VCF) are two important facies units that can be found in a volcanic reservoir or edifice. Because VEF and VCF generally exhibit opposing seismic reflection characteristics, few studies have been applied to simultaneous characterization of the two facies in seismic data. We have developed an integrated 3D seismic data attribute-based characterization technique of VEF and VCF in the BZ34-9 Block, Bohai Bay Basin, eastern China. Our method is based mainly on the 3D visualization of a thresholding display so as to separately describe the strong-amplitude reflection of the VEF with its original amplitude attribute and the weak-amplitude chaotic reflection of the VCF with its variance-cube attribute. The detailed workflow comprises four steps, including seismic facies analysis, characterization of the VEF, characterization of the VCF, and merging a display of the two volcanic-facies units. The resulting 3D image of the different volcanic facies described in the BZ34-9 Block should be able to be viewed from any perspective for a better understanding of the related genesis mechanisms of the first and second members of the Shahejie (Es12) and Dongying Formations (Ed). In total, 28 volcanic edifices have been identified on the basis of the proposed method, among which three volcanic edifices exhibited inherited eruptions, in the Es12 and the Ed. Volcanic edifices in the Es12 are distributed locally in the central part of the BZ34-9 Block, showing a central eruption style, whereas those of the Ed are characterized by a widespread distribution in the southern gentle slope of the BZ34-9 Block, revealing a composite, center-fissure eruption style. The approach should be convenient to operate and would be effective in characterizing different volcanic facies simultaneously. This application can serve as a useful reference for other basins or regions with obvious volcanic influence.


Sign in / Sign up

Export Citation Format

Share Document