fractured bedrock
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 46)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Vol 3 ◽  
Author(s):  
Brady A. Flinchum ◽  
W. Steven Holbrook ◽  
Bradley J. Carr

Fractures in Earth's critical zone influence groundwater flow and storage and promote chemical weathering. Fractured materials are difficult to characterize on large spatial scales because they contain fractures that span a range of sizes, have complex spatial distributions, and are often inaccessible. Therefore, geophysical characterizations of the critical zone depend on the scale of measurements and on the response of the medium to impulses at that scale. Using P-wave velocities collected at two scales, we show that seismic velocities in the fractured bedrock layer of the critical zone are scale-dependent. The smaller-scale velocities, derived from sonic logs with a dominant wavelength of ~0.3 m, show substantial vertical and lateral heterogeneity in the fractured rock, with sonic velocities varying by 2,000 m/s over short lateral distances (~20 m), indicating strong spatial variations in fracture density. In contrast, the larger-scale velocities, derived from seismic refraction surveys with a dominant wavelength of ~50 m, are notably slower than the sonic velocities (a difference of ~3,000 m/s) and lack lateral heterogeneity. We show that this discrepancy is a consequence of contrasting measurement scales between the two methods; in other words, the contrast is not an artifact but rather information—the signature of a fractured medium (weathered/fractured bedrock) when probed at vastly different scales. We explore the sample volumes of each measurement and show that surface refraction velocities provide reliable estimates of critical zone thickness but are relatively insensitive to lateral changes in fracture density at scales of a few tens of meters. At depth, converging refraction and sonic velocities likely indicate the top of unweathered bedrock, indicative of material with similar fracture density across scales.


Author(s):  
SashaT. Hart ◽  
Reginaldo A. Bertolo ◽  
Maria S. Agostini ◽  
Roland Feig ◽  
Paulo Lojkasek-Lima ◽  
...  

2021 ◽  
Author(s):  
Adedibu Sunny AKINGBOYE

Abstract Sustainable potable groundwater supplied by aquifers depends on the protective capacity of the strata overlying the aquifer zones and their thicknesses, as well as the nature of the aquifers and the conduit systems. The poor overburden development of the Araromi area of Akungba-Akoko, in the crystalline basement of southwestern Nigeria, restricts most aquifers to shallow depths. Hence, there is a need to investigate the groundwater quality of the tropically weathered and fractured gneissic aquifers in the area. A combined electrical resistivity tomography (ERT) and Schlumberger vertical electrical sounding (VES) technique were employed to assess the groundwater-yielding potential and vulnerability of the aquifer units. The measured geoelectric parameters (i.e., resistivity and thickness values) at the respective VES surveyed stations were used to compute the geohydraulic parameters, such as aquifer resistivity (\({\rho }_{o}\)), hydraulic conductivity (K), transmissivity (T), porosity (\(\phi\)), permeability (\({\Psi }\)), hydraulic resistance (\({\text{K}}_{R}\)), and longitudinal conductance (S). In addition, regression analysis was employed to establish the correlations between the K and other geohydraulic parameters to achieve the objectives of this study. The subsurface lithostratigraphic units of the studied site were delineated as the motley topsoil, weathered layers, partially weathered/fractured bedrock units, and the fresh bedrock, based on the ERT and the A, H, AK, HA, and KQ curve models. The K model regression-assisted analysis showed that the \({\rho }_{o}\), T, \(\phi\), \({\Psi }\), and S contributed about 81.7%, 3.31%. 96.6%, 100%, and 11.63%, respectively, of the determined K values for the study area. The results, except T and S, have strong high positive correlations with the K of the aquifer units; hence, accounted for the recorded high percentages. The aquifer units in the area were classified as low to moderate groundwater-yielding potential due to the thin overburden, with an average depth of <4 m. However, the deep-weathered and fractured aquifer zones with depths ranging from about 39–55 m could supply high groundwater yield for sustainable exploitation. The estimated S values, i.e., 0.0226–0.1926 mho, for aquifer protective capacity ratings rated the aquifer units in the area as poor/weak to moderately high with extremely high to high aquifer vulnerability index, based on the estimated low Log \({\text{K}}_{R}\) of about 0.01–1.77 years. Hence, intended wells/boreholes in the study area and its environs, as well as any environments with similar geohydraulic and vulnerability characteristics, should be properly constructed to adequately prevent surface and subsurface infiltrating contaminants.


2021 ◽  
Author(s):  
Adedibu Sunny AKINGBOYE

Abstract Sustainable potable groundwater supplied by aquifers depends on the protective capacity of the strata overlying the aquifer zones and their thicknesses, as well as the nature of the aquifers and the conduit systems. The poor overburden development of the Araromi area of Akungba-Akoko, in the crystalline basement of southwestern Nigeria, restricts most aquifers to shallow depths. Hence, there is a need to investigate the groundwater quality of the tropically weathered and fractured gneissic aquifers in the area. A combined electrical resistivity tomography (ERT) and Schlumberger vertical electrical sounding (VES) technique were employed to assess the groundwater-yielding potential and vulnerability of the aquifer units. The measured geoelectric parameters (i.e., resistivity and thickness values) at the respective VES surveyed stations were used to compute the geohydraulic parameters, such as aquifer resistivity (\({\rho }_{o}\)), hydraulic conductivity (K), transmissivity (T), porosity (\(\phi\)), permeability (\({\Psi }\)), hydraulic resistance (\({\text{K}}_{R}\)), and longitudinal conductance (S). In addition, regression analysis was employed to establish the correlations between the K and other geohydraulic parameters to achieve the objectives of this study. The subsurface lithostratigraphic units of the studied site were delineated as the motley topsoil, weathered layers, partially weathered/fractured bedrock units, and the fresh bedrock, based on the ERT and the A, H, AK, HA, and KQ curve models. The K model regression-assisted analysis showed that the \({\rho }_{o}\), T, \(\phi\), \({\Psi }\), and S contributed about 81.7%, 3.31%. 96.6%, 100%, and 11.63%, respectively, of the determined K values for the study area. The results, except T and S, have strong high positive correlations with the K of the aquifer units; hence, accounted for the recorded high percentages. The aquifer units in the area were classified as low to moderate groundwater-yielding potential due to the thin overburden, with an average depth of <4 m. However, the deep-weathered and fractured aquifer zones with depths ranging from about 39–55 m could supply high groundwater yield for sustainable exploitation. The estimated S values, i.e., 0.0226–0.1926 mho, for aquifer protective capacity ratings rated the aquifer units in the area as poor/weak to moderately high with extremely high to high aquifer vulnerability index, based on the estimated low Log \({\text{K}}_{R}\) of about 0.01–1.77 years. Hence, intended wells/boreholes in the study area and its environs, as well as any environments with similar geohydraulic and vulnerability characteristics, should be properly constructed to adequately prevent surface and subsurface infiltrating contaminants.


2021 ◽  
Vol 81 (3) ◽  
pp. 414-437
Author(s):  
Ellen McGrory ◽  
Tiernan Henry ◽  
Peter Conroy ◽  
Liam Morrison

AbstractThe presence of elevated arsenic concentrations (≥ 10 µg L−1) in groundwaters has been widely reported in areas of South-East Asia with recent studies showing its detection in fractured bedrock aquifers is occurring mainly in regions of north-eastern USA. However, data within Europe remain limited; therefore, the objective of this work was to understand the geochemical mobilisation mechanism of arsenic in this geologic setting using a study site in Ireland as a case study. Physicochemical (pH, Eh, d-O2), trace metals, major ion and arsenic speciation samples were collected and analysed using a variety of field and laboratory-based techniques and evaluated using statistical analysis. Groundwaters containing elevated dissolved arsenic concentrations (up to 73.95 µg L−1) were characterised as oxic-alkali groundwaters with the co-occurrence of other oxyanions (including Mo, Se, Sb and U), low dissolved concentrations of Fe and Mn, and low Na/Ca ratios indicated that arsenic was mobilised through alkali desorption of Fe oxyhydroxides. Arsenic speciation using a solid-phase extraction methodology (n = 20) showed that the dominant species of arsenic was arsenate, with pH being a major controlling factor. The expected source of arsenic is sulphide minerals within fractures of the bedrock aquifer with transportation of arsenic and other oxyanion forming elements facilitated by secondary Fe mineral phases. However, the presence of methylarsenical compounds detected in groundwaters illustrates that microbially mediated mobilisation processes may also be (co)-occurring. This study gives insight into the geochemistry of arsenic mobilisation that can be used to further guide research needs in this area for the protection of groundwater resources.


Author(s):  
O. G. Bayowa

Part of Ogbomoso Southwestern Nigeria was assessed using electrical resistivity method with a view to obtaining the subsurface geoelectric parameters (resistivities and thicknesses), categorizes the topsoil into different competence zones and evaluates the aquifer types, groundwater prospect and flow pattern. Fifty-four Vertical Electrical Sounding (VES) data were quantitatively interpreted using the partial curve matching technique to obtain the preliminary layer parameters which were further refined through 1-D forward modelling WinResist software package. The resulting final layer parameters were used to generate 2D geoelectric sections, isopach and isoresistivity maps and subsequently used to categorize the study area into different topsoil Competence, Aquifer types and Groundwater Potential zones. Static water levels of hand-dug wells in the area were used to generate the groundwater flow pattern. Four subsurface geoelectric layers were delineated. These were the topsoil, laterite, weathered/partly weathered layer (main aquifer) and fractured/fresh bedrock. The resistivities and thicknesses of the layers were 76-1858, 649-2021, 17-880 and 260-33385 Ωm and 0.4-4, 0.7-1.9 and 1.9-25.2 m respectively. The groundwater flow pattern in the area was NE-SW. The study concluded that incompetent to highly competent topsoil, weathered bedrock (main) aquifer unit/partly weathered/fractured bedrock aquifer and generally low groundwater potential with NE-SW flow direction underlay the study area.


2021 ◽  
Author(s):  
Carole D. Johnson ◽  
Stephanie N. Phillips ◽  
Frederick Day-Lewis ◽  
Claire Tiedeman ◽  
Bruce Rundell ◽  
...  

2021 ◽  
Author(s):  
Ying Zhao

&lt;p&gt;Preferential flow&lt;strong&gt; &lt;/strong&gt;(PF) processes are controlled by subsurface structures with a hierarchical organization across scales, but there is a lack of multiscale model validation using field data. In this study, a comprehensive dataset collected in the forested Shale Hills catchment was used to test and validate PF simulations with the 2-dimensional HYDRUS-2D model at the hillslope scale. The simulations were also compared with the 1-dimensional results at the pedon scale (HYDRUS-1D) and 3-dimensional results at the catchment scale (HYDRUS-3D). There was a good agreement between the 1D simulations and soil moisture measurements, which were mainly affected by the vertical change in porosity/permeability with depth and precipitation characteristics. However, short-term fluctuations due to PF were poorly captured. Notably, 2D and 3D simulations, accounting for PF controlled by slope position and shallow fractured bedrock, provided better results than the 1D simulations. The dual-porosity or anisotropic model provided more accurate soil moisture predictions than the single-porosity or isotropic model due to the more realistic representation of local soil and fractured shale. Consequently, our study shows the importance of multi-dimensional model approaches and the need to adequately represent the bedrocks' soil structure and fractured nature for the PF simulation. The multi-dimensional modeling approaches can represent PF pathways to the first-order stream and shows the benefits of the 3D simulation with detailed information to identify the dominant hydrological process.&lt;/p&gt;


2021 ◽  
Author(s):  
Ellen McGrory ◽  
Tiernan Henry ◽  
Peter Conroy ◽  
Liam Morrison

Abstract The presence of elevated arsenic concentrations (≥10 µg L-1) in groundwaters has been widely reported in areas of south east Asia with recent studies showing its detection in fractured bedrock aquifers mainly in regions of north-eastern United States. Data within Europe remains limited; therefore, the objective of this work was to understand the geochemical mobilisation mechanism of arsenic in this geologic setting. Physiochemical (pH, Eh, d-O2), trace metals, major ion and arsenic speciation samples were collected and analysed using a variety of field and laboratory-based techniques and evaluated using statistical analysis including multivariate analysis. Elevated dissolved arsenic concentrations (up to 73.95 µg L-1) were observed in oxic-alkali groundwaters with the co-occurrence of other oxyanions (e.g. Mo, Se, Sb and U), low dissolved concentrations of Fe and Mn and low Na/Ca ratios indicating that arsenic was mobilised through alkali desorption of Fe oxyhydroxides. Arsenic speciation using a solid-phase extraction methodology (n=20) showed that the dominant species of arsenic present in groundwater was arsenate, with pH being a major controlling factor. The expected source of arsenic is sulfide minerals within fractures of the bedrock aquifer with transportation of arsenic and other oxyanion-forming elements facilitated by secondary Fe mineral phases. However, the presence of methylarsenical compounds detected in the groundwaters illustrates that microbially mediated mobilisation processes were also (co)-occurring. This study demonstrates how field speciation of arsenic can be utilised to overcome analytical limitations of conventional laboratory speciation and to facilitate in the interpretation of the environmental mobility of arsenic within groundwaters.


Sign in / Sign up

Export Citation Format

Share Document