A Novel Infinite-acting Radial-flow Analysis Procedure for Estimating Horizontal and Vertical Permeability from an Observation Probe Pressure Response - (SPE-164797)

Author(s):  
M. Onur ◽  
P. Hegeman ◽  
I.M. Gok
2014 ◽  
Vol 17 (02) ◽  
pp. 152-164 ◽  
Author(s):  
M.. Onur ◽  
P.S.. S. Hegeman ◽  
I.M.. M. Gök

Summary This paper presents a new infinite-acting-radial-flow (IARF) analysis procedure for estimating horizontal and vertical permeability solely from pressure-transient data acquired at an observation probe during an interval pressure-transient test (IPTT) conducted with a single-probe, dual-probe, or dual-packer module. The procedure is based on new infinite-acting-radial-flow equations that apply for all inclination angles of the wellbore in a single-layer, 3D anisotropic, homogeneous porous medium. The equations for 2D anisotropic cases are also presented and are derived from the general equations given for the 3D anisotropic case. It is shown that the radial-flow equation presented reduces to Prats' (1970) equation assuming infinite-acting radial flow at an observation point along a vertical wellbore in isotropic or 2D anisotropic formations of finite bed thickness. The applicability of the analysis procedure is demonstrated by considering synthetic and field packer/probe IPTT data. The synthetic IPTT examples include horizontal- and slanted-well cases, but the field IPTT is for a vertical well. The results indicate that the procedure provides reliable estimates of horizontal and vertical permeability solely from observation-probe pressure data during radial flow for vertical, horizontal, and inclined wellbores. Most importantly, the analysis does not require that both spherical and radial flow prevail at the observation probe during the test.


2013 ◽  
Vol 7 (5) ◽  
pp. 967-976 ◽  
Author(s):  
Marcelo Farias de Andrade ◽  
Suelle Gisian Farias de Assis ◽  
Ana Paula Silveira Paim ◽  
Boaventura Freire dos Reis

1986 ◽  
pp. 134-156
Author(s):  
J. S. Archer ◽  
C. G. Wall

Author(s):  
Huseyin Sahin ◽  
Xiaojie Wang ◽  
Mark Miller ◽  
Yanming Liu ◽  
Faramarz Gordaninejad

The response time of magnetorheological (MR) fluids to an external magnetic field is a few milliseconds. However, the overall response time in MR devices under a magnetic field is a function of electromagnetic parameters, the capabilities of the driving electronics, as well as, the operation conditions. Therefore, the overall response time of a MR device depends on the internal device design parameters. In this work, the response times of MR fluid and MR fluid valves have been studied under various flow configurations. Two types of valving geometries; annular flow, and radial flow are considered in the MR fluid valve designs. The transient pressure response of MR fluid valves are evaluated by using a diaphragm pump with a constant volume flow rate. The performance of each MR valve is characterized using a voltage step input, as well as, a current step input while recording the activation electric voltage/current, magnetic flux density, and pressure drop as a function of time. The variation of the response time of the MR valves under constant volume flow rate is experimentally investigated. The system’s time constant is determined under induced pressure changes. In order to obtain the response time of the MR fluid a Maxwell model with a time constant is employed to describe the field induced pressure behavior of MR fluid under a steady flow. The results demonstrate that the pressure response times of the MR fluid and the MR valves depend on the designs of the electric parameters and the valve geometry. MR valves in annular flow geometry have a slow falling response time compared to their rising response time. MR valves in radial flow geometry result in faster pressure response times both in rising and falling states.


Sign in / Sign up

Export Citation Format

Share Document