A Novel Infinite-Acting-Radial-Flow Analysis Procedure for Estimating Permeability Anisotropy From an Observation-Probe Pressure Response at a Vertical, Horizontal, or Inclined Wellbore

2014 ◽  
Vol 17 (02) ◽  
pp. 152-164 ◽  
Author(s):  
M.. Onur ◽  
P.S.. S. Hegeman ◽  
I.M.. M. Gök

Summary This paper presents a new infinite-acting-radial-flow (IARF) analysis procedure for estimating horizontal and vertical permeability solely from pressure-transient data acquired at an observation probe during an interval pressure-transient test (IPTT) conducted with a single-probe, dual-probe, or dual-packer module. The procedure is based on new infinite-acting-radial-flow equations that apply for all inclination angles of the wellbore in a single-layer, 3D anisotropic, homogeneous porous medium. The equations for 2D anisotropic cases are also presented and are derived from the general equations given for the 3D anisotropic case. It is shown that the radial-flow equation presented reduces to Prats' (1970) equation assuming infinite-acting radial flow at an observation point along a vertical wellbore in isotropic or 2D anisotropic formations of finite bed thickness. The applicability of the analysis procedure is demonstrated by considering synthetic and field packer/probe IPTT data. The synthetic IPTT examples include horizontal- and slanted-well cases, but the field IPTT is for a vertical well. The results indicate that the procedure provides reliable estimates of horizontal and vertical permeability solely from observation-probe pressure data during radial flow for vertical, horizontal, and inclined wellbores. Most importantly, the analysis does not require that both spherical and radial flow prevail at the observation probe during the test.

2022 ◽  
Vol 12 (2) ◽  
pp. 817
Author(s):  
Jang Hyun Lee ◽  
Juhairi Aris Bin Muhamad Shuhili

Pressure transient analysis for a vertically hydraulically fractured well is evaluated using two different equations, which cater for linear flow at the early stage and radial flow in the later stage. However, there are three different stages that take place for an analysis of pressure transient, namely linear, transition and pseudo-radial flow. The transition flow regime is usually studied by numerical, inclusive methods or approximated analytically, for which no specific equation has been built, using the linear and radial equations. Neither of the approaches are fully analytical. The numerical, inclusive approach results in separate calculations for the different flow regimes because the equation cannot cater for all of the regimes, while the analytical approach results in a difficult inversion process to compute well test-derived properties such as permeability. There are two types of flow patterns in the fracture, which are uniform and non-uniform, called infinite conductivity in a high conductivity fracture. The study was conducted by utilizing an analogous study of linear flow equations. Instead of using the conventional error function, the exponential integral with an infinite number of wells was used. The results obtained from the developed analytical solution matched the numerical results, which proved that the equation was representative of the case. In conclusion, the generated analytical equation can be directly used as a substitute for current methods of analyzing uniform flow in a hydraulically fractured well.


Author(s):  
Alexander Mielke

AbstractWe consider a non-negative and one-homogeneous energy functional $${{\mathcal {J}}}$$ J on a Hilbert space. The paper provides an exact relation between the solutions of the associated gradient-flow equations and the energetic solutions generated via the rate-independent system given in terms of the time-dependent functional $${{\mathcal {E}}}(t,u)= t {{\mathcal {J}}}(u)$$ E ( t , u ) = t J ( u ) and the norm as a dissipation distance. The relation between the two flows is given via a solution-dependent reparametrization of time that can be guessed from the homogeneities of energy and dissipations in the two equations. We provide several examples including the total-variation flow and show that equivalence of the two systems through a solution dependent reparametrization of the time. Making the relation mathematically rigorous includes a careful analysis of the jumps in energetic solutions which correspond to constant-speed intervals for the solutions of the gradient-flow equation. As a major result we obtain a non-trivial existence and uniqueness result for the energetic rate-independent system.


Author(s):  
W. T. Tiow ◽  
M. Zangeneh

The development and application of a three-dimensional inverse methodology is presented for the design of turbomachinery blades. The method is based on the mass-averaged swirl, rV~θ distribution and computes the necessary blade changes directly from the discrepancies between the target and initial distributions. The flow solution and blade modification converge simultaneously giving the final blade geometry and the corresponding steady state flow solution. The flow analysis is performed using a cell-vertex finite volume time-marching algorithm employing the multistage Runge-Kutta integrator in conjunction with accelerating techniques (local time stepping and grid sequencing). To account for viscous effects, dissipative forces are included in the Euler solver using the log-law and mixing length models. The design method can be used with any existing solver solving the same flow equations without any modifications to the blade surface wall boundary condition. Validation of the method has been carried out using a transonic annular turbine nozzle and NASA rotor 67. Finally, the method is demonstrated on the re-design of the blades.


2000 ◽  
Vol 3 (01) ◽  
pp. 68-73 ◽  
Author(s):  
Leif Larsen

Summary Analytical methods are presented to determine the pressure-transient behavior of multibranched wells in layered reservoirs. The computational methods are based on Laplace transforms and numerical inversion to generate type curves for use in direct analyses of pressure-transient data. Any number of branches with arbitrary direction and deviation can in principle be handled, although the computational cost will increase considerable with increasing number of branches. However, due to practical considerations, a large number of branches is also unlikely in most cases. Introduction With increased interest in multibranched wells as a means to improve productivity, it is important to have computational methods for predictions and analyses of such wells. Ozkan et al.1 presented such solutions for dual lateral wells in homogeneous formations. The present paper extends these results to multibranched wells in layered reservoirs. The approach covers reservoirs both with and without formation crossflow, but cases without crossflow can also be handled similar to homogenous reservoirs. Boundary effects are not included, but can be added from an equivalent homogeneous model if pseudoradial flow is reached within the infinite-acting period. The methods used in this paper are direct extensions of methods presented by Larsen2 for deviated wells in layered reservoirs. The results in Ref. 2 apply for any deviation, and hence, also for horizontal segments within different layers. The approach was restricted, however, to cover at most one segment within each layer with no overlap vertically. In the approach used in the present paper, these restrictions have been removed. Mathematical Approach Except for simple cases with only vertical branches, general multibranched wells will require a three-dimensional flow equation within individual layers to capture the flow geometry. If the horizontal permeability is independent of direction within each layer, flow within Layer j can be described by the equation k j ( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 ) p j + k j ′ ∂ 2 p j ∂ z 2 = μ ϕ j c t j ∂ p j ∂ t , ( 1 ) under normal assumptions, where kj and kj=′ denote horizontal and vertical permeability, and the other indexed variables have the standard meaning for each layer. Copying Ref. 2, an approach similar to Refs. 3 and 4 will be followed with vertical variation of pressure within each layer removed by passing to the vertical average. For Layer j, the new pressure p a j ( x , y , t ) = 1 h j ∫ z j − 1 z j p j ( x , y , z , t ) d z , ( 2 ) is then obtained, where z j?1 and zj= zj?1+hj are the z coordinates of the lower and upper boundaries of the layer. There is one major problem with the direct approach above. It cannot handle the boundary condition at the wellbore for nonvertical segments. To get around this problem, each perforated layer segment will be replaced by a uniform-flux fracture in the primary solution scheme. This approach is illustrated in Fig. 1 for a two-branched well in a three-layered reservoir, with Branch 1 fully perforated through the reservoir and Branch 2 fully perforated in Layers 1 and 2 and partially completed with a horizontal segment in Layer 3. Since an infinite-conductivity wellbore (consisting of the branches) will be assumed, a time-dependent skin factor is added to each fracture to get the actual branch (i.e., deviated well) pressure from the fracture solution. This is identical to the approach used in Ref. 2 for individual branches. With branch angle ?j (as a deviation from the vertical) and completed branch length Lwj in Layer j, the associated fracture half-length will be given by the identity x f j = 1 2 L w j s i n θ j ( 3 ) for each j. The completed branch length Lwj is assumed to consist of a single fully perforated interval. The fracture half-length in layers with vertical branch segments will be set equal to the wellbore radius rwa To capture deviated branches with more than one interval within a layer, the model can be subdivided by introducing additional layers. If Eq. 1 is integrated from zj?1 to z j, as shown in Eq. 2, then the new flow equation k j h j ( ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 ) p a j + k j ′ ∂ p j ∂ z | z j − k j ′ ∂ p j ∂ z | z j − 1 = μ ϕ j c t j h j ∂ p a j ∂ t ( 4 ) is obtained. The two gradient terms remaining in Eq. 4 represent flux through the upper and lower boundaries of Layer j. In the standard multiple-permeability modeling of layered reservoirs, the gradient terms are replaced by difference expressions in the form k j ′ ∂ p j ∂ z | z j = k j + 1 ′ ∂ p j + 1 ∂ z | z j = λ j ′ ( p a , j + 1 − p a j ) ( 5 ) for each j, where λj′ is a constant determined from reservoir parameters or adjusted to fit the response of the well. For details on how to choose crossflow parameters, see Refs. 3 and 4, and additional references cited in those papers. Additional fracture to well drawdown is assumed not to affect this approach. Since vertical flow components are important for deviated branches, the crossflow parameters in Eq. 5 will be important elements of the mathematical model. If, for instance, the standard choice from Refs. 3 and 4 is used, then vertical flow will be reduced even in isotropic homogeneous formations, but doubling the default ? is sufficient in many cases to remove this error. However, since these parameters will be quite uncertain in field data anyway, the modeling should be more than adequate.


1995 ◽  
Vol 10 (31) ◽  
pp. 2367-2379 ◽  
Author(s):  
J. ADAMS ◽  
N. TETRADIS ◽  
J. BERGES ◽  
F. FREIRE ◽  
C. WETTERICH ◽  
...  

Nonperturbative exact flow equations describe the scale dependence of the effective average action. We present a numerical solution for an approximate form of the flow equation for the potential in a three-dimensional N-component scalar field theory. The critical behavior, with associated critical exponents, can be inferred with good accuracy.


Sign in / Sign up

Export Citation Format

Share Document