flow equation
Recently Published Documents


TOTAL DOCUMENTS

737
(FIVE YEARS 136)

H-INDEX

46
(FIVE YEARS 6)

2022 ◽  
Vol 105 (1) ◽  
Author(s):  
Viktor Novičenko ◽  
Giedrius Žlabys ◽  
Egidijus Anisimovas

2022 ◽  
Vol 4 (3) ◽  
pp. 1-14
Author(s):  
Dong-Ho Tsai ◽  
◽  
Xiao-Liu Wang ◽  

<abstract><p>With the help of heat equation, we first construct an example of a graphical solution to the curve shortening flow. This solution $ y\left(x, t\right) \ $has the interesting property that it converges to a log-periodic function of the form</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ A\sin \left( \log t\right) +B\cos \left( \log t\right) $\end{document} </tex-math></disp-formula></p> <p>as$ \ t\rightarrow \infty, \ $where $ A, \ B $ are constants. Moreover, for any two numbers $ \alpha &lt; \beta, \ $we are also able to construct a solution satisfying the oscillation limits</p> <p><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \liminf\limits_{t\rightarrow \infty}y\left( x,t\right) = \alpha,\ \ \ \limsup\limits _{t\rightarrow \infty}y\left( x,t\right) = \beta,\ \ \ x\in K $\end{document} </tex-math></disp-formula></p> <p>on any compact subset$ \ K\subset \mathbb{R}. $</p></abstract>


2022 ◽  
Vol 58 (1) ◽  
Author(s):  
A. Tichai ◽  
P. Arthuis ◽  
H. Hergert ◽  
T. Duguet

AbstractThe goal of the present paper is twofold. First, a novel expansion many-body method applicable to superfluid open-shell nuclei, the so-called Bogoliubov in-medium similarity renormalization group (BIMSRG) theory, is formulated. This generalization of standard single-reference IMSRG theory for closed-shell systems parallels the recent extensions of coupled cluster, self-consistent Green’s function or many-body perturbation theory. Within the realm of IMSRG theories, BIMSRG provides an interesting alternative to the already existing multi-reference IMSRG (MR-IMSRG) method applicable to open-shell nuclei. The algebraic equations for low-order approximations, i.e., BIMSRG(1) and BIMSRG(2), can be derived manually without much difficulty. However, such a methodology becomes already impractical and error prone for the derivation of the BIMSRG(3) equations, which are eventually needed to reach high accuracy. Based on a diagrammatic formulation of BIMSRG theory, the second objective of the present paper is thus to describe the third version (v3.0) of the code that automatically (1) generates all valid BIMSRG(n) diagrams and (2) evaluates their algebraic expressions in a matter of seconds. This is achieved in such a way that equations can easily be retrieved for both the flow equation and the Magnus expansion formulations of BIMSRG. Expanding on this work, the first future objective is to numerically implement BIMSRG(2) (eventually BIMSRG(3)) equations and perform ab initio calculations of mid-mass open-shell nuclei.


Author(s):  
Zhenbo Gao ◽  
Yong Zhang ◽  
Dandan Wang

Plunger pair is the key component of high pressure common rail injector and its sealing performance is very important. Therefore, it is of great significance to study the leakage mechanism of plunger pair. Under static condition, the high-pressure fuel flow in the gap of the plunger pair caused the deformation of the plunger pair structure and the temperature rise of fuel. For a more comprehensive and accurate study, the effect of deformation, including elastic deformation and thermal expansion, the physical properties of fuel, including density, viscosity and specific heat capacity, as well as the influence of plunger posture in the plunger sleeve, including concentric, eccentric, and inclination condition, are considered in this paper. Firstly, the mathematical models including Reynolds equation, film thickness equation, non-isothermal flow equation, parametric equation of fuel physical property, and section velocity equation are established. The numerical analysis based on finite difference method for the solution of these models is given, which can simultaneously solve for the fuel film pressure distribution, temperature distribution, thickness distribution, distribution of fuel physical properties, and leakage rate. The models are validated by comparing the calculated leakage rates with the measurements. The effects under different posture of plunger are discussed too. Some of the conclusions provided good guidance for the design of high-pressure common rail injector.


2021 ◽  
Author(s):  
Liu Zhao-Yang ◽  
Zhang Yang-Zhong ◽  
Swadesh Mitter Mahajan ◽  
Liu A-Di ◽  
Zhou Chu ◽  
...  

Abstract There are two distinct phases in the evolution of drift wave envelope in the presence of zonal flow. A long-lived standing wave phase, which we call the Caviton, and a short-lived traveling wave phase (in radial direction) we call the Instanton. Several abrupt phenomena observed in tokamaks, such as intermittent excitation of geodesic acoustic mode (GAM) shown in this paper, could be attributed to the sudden and fast radial motion of Instanton. The composite drift wave – zonal flow system evolves at the two well-separate scales: the micro and the meso-scale. The eigenmode equation of the model defines the zero order (micro-scale) variation; it is solved by making use of the two dimensional (2D) weakly asymmetric ballooning theory (WABT), a theory suitable for modes localized to rational surface like drift waves, and then refined by shifted inverse power method, an iterative finite difference method. The next order is the equation of electron drift wave (EDW) envelope (containing group velocity of EDW) which is modulated by the zonal flow generated by Reynolds stress of EDW. This equation is coupled to the zonal flow equation, and numerically solved in spatiotemporal representation; the results are displayed in self-explanatory graphs. One observes a strong correlation between the Caviton-Instanton transition and the zero-crossing of radial group velocity of EDW. The calculation brings out the defining characteristics of the Instanton: it begins as a linear traveling wave right after the transition. Then, it evolves to a nonlinear stage with increasing frequency all the way to 20 kHz. The modulation to Reynolds stress in zonal flow equation brought in by the nonlinear Instanton will cause resonant excitation to GAM. The intermittency is shown due to the random phase mixing between multiple central rational surfaces in the reaction region.


2021 ◽  
Author(s):  
Fan Zhang ◽  
Hui Jiang ◽  
Minghuan Wu ◽  
Jianchun Peng

This paper is dedicated to solving the distributed optimization of generation dispatch of multi-area AC systems interconnected by DC lines, which aims at minimizing the total generation cost while satisfying the power supply demand balance and generation capacity constraints. A novel nodal loss formula which derived from the branch active power flow equation is proposed based on phase angle and impedance to improve the system economy. A distributed algorithm based on consensus is built to solve the generation dispatch problem. It has a great effect on improving convergence effect and rate of the system. The control strategy is used on the structure of multi-area interconnection, which improves the reliability of power supply and guarantee the power quality. The study was conducted using three area AC systems interconnected by DC lines. The simulation results show that the proposed generation dispatch method is reliable in convergence. It provides an effective tool for distributed optimization of generation dispatch of multi-area AC systems interconnected by DC lines.


2021 ◽  
Vol 111 (6) ◽  
Author(s):  
Dmitri Bykov ◽  
Dieter Lüst

AbstractIt is shown that the Pohlmeyer map of a $$\sigma $$ σ -model with a toric two-dimensional target space naturally leads to the ‘sausage’ metric. We then elaborate the trigonometric deformation of the $$\mathbb {CP}^{n-1}$$ CP n - 1 -model, proving that its T-dual metric is Kähler and solves the Ricci flow equation. Finally, we discuss a relation between flag manifold $$\sigma $$ σ -models and Toda field theories.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Ryotaku Suzuki ◽  
Shinya Tomizawa

Abstract Using the large D effective theory approach, we construct a static solution of non-extremal and squashed black holes with/without an electric charge, which describes a spherical black hole in a Kaluza-Klein spacetime with a compactified dimension. The asymptotic background with a compactified dimension and near-horizon geometry are analytically solved by the 1/D expansion. Particularly, our work demonstrates that the large D limit can be applied to solve the non-trivial background with a compactified direction, which leads to a first-order flow equation. Moreover, we show that the extremal limit consistently reproduces the known extremal result.


2021 ◽  
Vol 2131 (2) ◽  
pp. 022039
Author(s):  
A Mukutadze ◽  
V Prikhodko ◽  
I Dolgiy

Abstract This paper outlines a new approach for finding an asymptotic and exact self-similar solution for the zero and first (without taking into account the melt and considering the melt, respectively) approximation of the wedge-shaped plain bearing with a non-standard support profile of the slide and the low-melting metal coating of the surface. The given approach is based on the flow equation of a ferromagnetic fluid for a «thin layer», the continuity equation, as well as the equation describing the profile of the guide’s molten contour. The proposed method takes into account the dependence of the rheological properties of the lubricant and the melt that have ferromagnetic properties in the laminar flow on pressure. We have succeeded in obtaining accurate analytical dependences for the field of velocities and pressure at zero and first approximations and the ones for the profile of the guide’s molten surface. Besides, we have managed to determine the key performance properties for the slide–guide friction pair, including load-bearing capacity and friction force. Finally, we could assess how the bearing capacity and friction force are influenced by parameters caused by the coating melt adapted to the conditions of the support profile friction and a parameter that characterize the rheological properties of the lubricant.


Sign in / Sign up

Export Citation Format

Share Document