Seismic Full-waveform Inversion Using a Finite-difference Contrast Source Inversion Method

Author(s):  
A. Abubakar ◽  
W. Hu ◽  
T. M. Habashy ◽  
P. M. van den Berg
2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Bo Han ◽  
Qinglong He ◽  
Yong Chen ◽  
Yixin Dou

This paper extends the finite-difference contrast source inversion method to reconstruct the mass density for two-dimensional elastic wave inversion in the framework of the full-waveform inversion. The contrast source inversion method is a nonlinear iterative method that alternatively reconstructs contrast sources and contrast function. One of the most outstanding advantages of this inversion method is the highly computational efficiency, since it does not need to simulate a full forward problem for each inversion iteration. Another attractive feature of the inversion method is that it is of strong capability in dealing with nonlinear inverse problems in an inhomogeneous background medium, because a finite-difference operator is used to represent the differential operator governing the two-dimensional elastic wave propagation. Additionally, the techniques of a multiplicative regularization and a sequential multifrequency inversion are employed to enhance the quality of reconstructions for this inversion method. Numerical reconstruction results show that the inversion method has an excellent performance for reconstructing the objects embedded inside a homogeneous or an inhomogeneous background medium.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 260
Author(s):  
Meng Suo ◽  
Dong Zhang ◽  
Yan Yang

Inspired by the large number of applications for symmetric nonlinear equations, an improved full waveform inversion algorithm is proposed in this paper in order to quantitatively measure the bone density and realize the early diagnosis of osteoporosis. The isotropic elastic wave equation is used to simulate ultrasonic propagation between bone and soft tissue, and the Gauss–Newton algorithm based on symmetric nonlinear equations is applied to solve the optimal solution in the inversion. In addition, the authors use several strategies including the frequency-grid multiscale method, the envelope inversion and the new joint velocity–density inversion to improve the result of conventional full-waveform inversion method. The effects of various inversion settings are also tested to find a balanced way of keeping good accuracy and high computational efficiency. Numerical inversion experiments showed that the improved full waveform inversion (FWI) method proposed in this paper shows superior inversion results as it can detect small velocity–density changes in bones, and the relative error of the numerical model is within 10%. This method can also avoid interference from small amounts of noise and satisfy the high precision requirements for quantitative ultrasound measurements of bone.


Sign in / Sign up

Export Citation Format

Share Document