Determination of the principal directions of azimuthal anisotropy from P-wave seismic data

Author(s):  
S. Mallick ◽  
K. L. Craft ◽  
L. J. Meister ◽  
R. E. Chambers
Geophysics ◽  
1998 ◽  
Vol 63 (2) ◽  
pp. 692-706 ◽  
Author(s):  
Subhashis Mallick ◽  
Kenneth L. Craft ◽  
Laurent J. Meister ◽  
Ronald E. Chambers

In an azimuthally anisotropic medium, the principal directions of azimuthal anisotropy are the directions along which the quasi-P- and the quasi-S-waves propagate as pure P and S modes. When azimuthal anisotropy is induced by oriented vertical fractures imposed on an azimuthally isotropic background, two of these principal directions correspond to the directions parallel and perpendicular to the fractures. S-waves propagating through an azimuthally anisotropic medium are sensitive to the direction of their propagation with respect to the principal directions. As a result, primary or mode‐converted multicomponent S-wave data are used to obtain the principal directions. Apart from high acquisition cost, processing and interpretation of multicomponent data require a technology that the seismic industry has not fully developed. Anisotropy detection from conventional P-wave data, on the other hand, has been limited to a few qualitative studies of the amplitude variation with offset (AVO) for different azimuthal directions. To quantify the azimuthal AVO, we studied the amplitude variation with azimuth for P-wave data at fixed offsets. Our results show that such amplitude variation with azimuth is periodic in 2θ, θ being the orientation of the shooting direction with respect to one of the principal directions. For fracture‐induced anisotropy, this principal direction corresponds to the direction parallel or perpendicular to the fractures. We use this periodic azimuthal dependence of P-wave reflection amplitudes to identify two distinct cases of anisotropy detection. The first case is an exactly determined one, where we have observations from three azimuthal lines for every common‐midpoint (CMP) location. We derive equations to compute the orientation of the principal directions for such a case. The second case is an overdetermined one where we have observations from more than three azimuthal lines. Orientation of the principal direction from such an overdetermined case can be obtained from a least‐squares fit to the reflection amplitudes over all the azimuthal directions or by solving many exactly determined problems. In addition to the orientation angle, a qualitative measure of the degree of azimuthal anisotropy can also be obtained from either of the above two cases. When azimuthal anisotropy is induced by oriented vertical fractures, this qualitative measure of anisotropy is proportional to fracture density. Using synthetic seismograms, we demonstrate the robustness of our method in evaluating the principal directions from conventional P-wave seismic data. We also apply our technique to real P-wave data, collected over a wide source‐to‐receiver azimuth distribution. Computations using our method gave an orientation of the principal direction consistent with the general fracture orientation in the area as inferred from other geological and geophysical evidence.


1996 ◽  
Author(s):  
Subhashis Mallick ◽  
Kenneth L., Craft ◽  
Laurent J. Meister ◽  
Ron E. Chambers

1997 ◽  
Vol 28 (4) ◽  
pp. 379-382 ◽  
Author(s):  
Subhashis Mallick ◽  
Kenneth L. Craft ◽  
Laurent J. Meister ◽  
Ron E Chambers

2002 ◽  
Author(s):  
F.D. Gray ◽  
K.J. Head ◽  
M. Lahr ◽  
G. Roberts

2014 ◽  
Vol 2 (2) ◽  
pp. SE105-SE115 ◽  
Author(s):  
Mehdi E. Far ◽  
Bob Hardage

Using a data set from the Marcellus Shale, we evaluated the advantages of multicomponent seismic data for fracture and anisotropy studies over conventional P-wave data. Using traveltime and amplitude analysis on pre- and poststack seismic data, we concluded that PS-waves can provide more accurate information about the location, orientation, and intensity of natural fractures and stress anisotropy than P-waves. Our analysis indicated that regional stress was the main cause of velocity anisotropy. Amplitude variation with offset and azimuth appeared to be more useful for fracture studies, whereas traveltime variations (especially PS-waves) provided a better indication of regional stress orientations. Principal directions for amplitudes and traveltimes of PP- and PS-waves were different. Misalignment of PP- and PS-waves principal directions suggested that the simplest, most realistic anisotropy model for the fractured Marcellus is monoclinic symmetry.


Geophysics ◽  
1996 ◽  
Vol 61 (2) ◽  
pp. 315-330 ◽  
Author(s):  
Edward L. Shuck ◽  
Thomas L. Davis ◽  
Robert D. Benson

Methane is produced from fractured coalbed reservoirs at Cedar Hill Field in the San Juan Basin. Fracturing and local stress are critical to production because of the absence of matrix permeability in the coals. Knowledge of the direction of open fractures, the degree of fracturing, reservoir pressure, and compartmentalization is required to understand the flow of fluids through the reservoir. A multicomponent 3-D seismic survey was acquired to aid in coalbed methane reservoir characterization. Coalbed reservoir heterogeneities, including isolated pressure cells, zones of increased fracture density, and variable fracture directions, have been interpreted through the analysis of the multicomponent data and integration with petrophysical and reservoir engineering studies. Strike‐slip faults, which compartmentalize the reservoir, have been identified by structural interpretation of the 3-D P‐wave seismic data. These faults form boundaries for pressure cells that have been identified by P‐wave reflection amplitude anomalies. The analysis of polarizations, traveltimes, and reflection amplitudes from the shear‐wave seismic data has allowed the identification of zones of variable fracture direction and fracture density. There is good agreement between stresses inferred from the structural interpretation and those indicated by the shear‐wave polarizations. Reflection amplitudes have been calibrated to seismic velocities and reservoir pressures through the use of petrophysical data taken from core samples. New methods have been developed for the statistical analysis of prestack shear‐wave polarizations, poststack polarizations, and the accurate determination of traveltime anisotropy. The prestack polarization analysis method allows for rapid and efficient determination of a dominant polarization direction. Shear‐wave anisotropy has been quantified over the reservoir zone using both traveltime and thin‐bed reflection response with excellent agreement between the two methods. Crack densities computed from the anisotropy show two regions of high crack density, one coinciding with a sealed overpressured cell and the other in the region of the Hamilton ♯3 well. This indicates the potential for monitoring production of coalbed methane reservoirs using multicomponent seismology.


2020 ◽  
Vol 8 (1) ◽  
pp. SA73-SA83
Author(s):  
Wanxue Xie ◽  
Guangming He ◽  
Le Li ◽  
Degang Jin ◽  
Dan Chen ◽  
...  

The role of anisotropy in fracture detection has dramatically increased with the advent of wide-azimuth (WAZ) and high-density seismic acquisition. Fracture prediction using horizontal transverse isotropy (HTI) anisotropic theory is a useful tool for identifying reservoir characteristics. We have developed an approach for fracture density and orientation estimation based on the combination of a velocity variation with azimuth (VVAZ) and an amplitude variation with azimuth (AVAZ) analysis workflow. First, we sort the prestack WAZ data into offset vector tile (OVT) sectors and perform VVAZ inversion by elliptical velocity fitting of measured azimuth-differential traveltimes. In this step, we can predict the fast P-wave velocity, slow P-wave velocity, and fracture orientation. Second, we apply AVAZ inversion to extract more accurate predictions of the anisotropic gradient and fracture orientation. We implement the method with 3D prestack WAZ seismic data acquired in the Sichuan Basin, from the southwest part of China. The field data example indicates that the inversion results agree with geologic information and well-log imaging data, which confirm the effectiveness of this technology.


2021 ◽  
pp. 1-52
Author(s):  
Youfang Liu ◽  
James Simmons

Several P-wave azimuthal anisotropy studies have been conducted for the SEAM II Barrett model data. However, these analyses provide fracture property estimation that is inconsistent with the actual model properties. Therefore, we perform a feasibility study to understand the influence of the overburden and reservoir properties, and the processing and inversion steps, which together determine the success of the fracture interpretation from seismic data. 1D model properties (orthorhombic for both overburden and reservoir) are first extracted from the actual Barrett model properties at two locations. Anisotropic prestack reflectivity modeling exposes the true orthorhombic response of the 1D medium in the form of Common Offset and Common Azimuth (COCA) gathers. The true anisotropic response is obscured in the Barrett data (generated by finite element modeling) due to the mild lateral velocity variations and orthorhombic anisotropy in the overburden. We then expose the reservoir anisotropic response by using an isotropic overburden in the reflectivity modeling. This shows that the P-wave VVAZ responses generated by the reservoir itself are weak, which leads to an unstable VVAZ inversion to estimate the interval NMO velocity anisotropy. The reservoir thickness (125m or 65ms TWT) or NMO velocity anisotropy (6-7%) needs to be at least doubled to obtain a stable VVAZ inversion. Anisotropic geometrical-spreading correction improves the amplitude-versus-azimuth (AVAZ) inversion results when reflectivity modeling models orthorhombic overburden. The converted wave ( C-wave) has a stronger VVAZ response compared to the P-wave. We suggest that the C-wave data could be useful to constrain fracture interpretation in the Barrett model. We conclude that the results of previous studies are due to the combination of the residual influence of overburden after processing and imaging, and the weak anisotropy responses from the reservoir.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gaochun Wang ◽  
Hans Thybo ◽  
Irina M. Artemieva

AbstractAll models of the magmatic and plate tectonic processes that create continental crust predict the presence of a mafic lower crust. Earlier proposed crustal doubling in Tibet and the Himalayas by underthrusting of the Indian plate requires the presence of a mafic layer with high seismic P-wave velocity (Vp > 7.0 km/s) above the Moho. Our new seismic data demonstrates that some of the thickest crust on Earth in the middle Lhasa Terrane has exceptionally low velocity (Vp < 6.7 km/s) throughout the whole 80 km thick crust. Observed deep crustal earthquakes throughout the crustal column and thick lithosphere from seismic tomography imply low temperature crust. Therefore, the whole crust must consist of felsic rocks as any mafic layer would have high velocity unless the temperature of the crust were high. Our results form basis for alternative models for the formation of extremely thick juvenile crust with predominantly felsic composition in continental collision zones.


Sign in / Sign up

Export Citation Format

Share Document