Analytic description of reflection coefficients in anisotropic media

Author(s):  
A. Rueger
2001 ◽  
Author(s):  
E. N. S. Gomes ◽  
J. S. Protázio ◽  
J. C. Costa ◽  
I. A. Simões‐Filho

Geophysics ◽  
2009 ◽  
Vol 74 (5) ◽  
pp. WB193-WB202 ◽  
Author(s):  
Jyoti Behura ◽  
Ilya Tsvankin

Such reservoir rocks as tar sands are characterized by significant attenuation and, in some cases, attenuation anisotropy. Most existing attenuation studies are focused on plane-wave attenuation coefficients, which determine the amplitude decay along the raypath of seismic waves. Here we study the influence of attenuation on PP- and PS-wave reflection coefficients for anisotropic media with the main emphasis on transversely isotropic models with a vertical symmetry axis (VTI). Concise analytic solutions obtained by linearizing the exact plane-wave reflection coefficients are verified by numerical modeling. To make a substantial contribution to reflection coefficients, attenuation must be strong, with the quality factor [Formula: see text] not exceeding 10. For such highly attenuative media, it is also necessary to take attenuation anisotropy into account if the magnitude of the Thomsen-styleattenuation-anisotropy parameters is relatively large. In general, the linearized reflection coefficients in attenuative media include velocity-anisotropy parameters but have almost “isotropic” dependence on attenuation. Our formalism also helps evaluate the influence of the inhomogeneity angle (the angle between the real and imaginary parts of the slowness vector) on the reflection coefficients. A nonzero inhomogeneity angle of the incident wave introduces additional terms into the PP- and PS-wave reflection coefficients, which makes conventional amplitude-variation-with-offset (AVO) analysis inadequate for strongly attenuative media. For instance, an incident P-wave with a nonzero inhomogeneity angle generates a mode-converted PS-wave at normal incidence, even if both half-spaces have a horizontal symmetry plane. The developed linearized solutions can be used in AVO inversion for highly attenuative (e.g., gas-sand and heavy-oil) reservoirs.


Geophysics ◽  
1972 ◽  
Vol 37 (6) ◽  
pp. 985-996 ◽  
Author(s):  
J. A. Kong

Solutions to the problem of radiation of dipole antennas in the presence of a stratified anisotropic media are facilitated by decomposing a general wave field into transverse magnetic (TM) and transverse electric (TE) modes. Employing the propagation matrices, wave amplitudes in any region are related to those in any other regions. The reflection coefficients, which embed all the information about the geometrical configuration and the physical constituents of the medium, are obtained in closed form. In view of the general formulation, various special cases are discussed.


Author(s):  
G. A. Dugarov ◽  
R. K. Bekrenev ◽  
T. V. Nefedkina

The paper considers an algorithm for calculating reflection coefficients from boundary between two HTI media. Analysis of the presence of anisotropy above and below the target boundary, as well as variations in the parameters of HTI media, was done. Interpretation of reflection data from the boundary between two HTI media with neglect of anisotropy above or below potentially leads to significant errors in estimation of symmetry axes directions, and hence fracturing orientation. Overestimation/underestimation of an elastic parameter in the overlying HTI medium could lead to a corresponding overestimation/underestimation of similar parameter in the underlying target layer in the result of AVAZ inversion. Furthermore, among the anisotropy parameters Thomsen parameter γ has most significant influence on the reflection coefficients dependences. Thus, the parameter γ could be used foremost as a result of the AVAZ inversion.


1997 ◽  
Vol 129 (2) ◽  
pp. 389-398 ◽  
Author(s):  
Matthias Zillmer ◽  
Dirk Gajewski ◽  
Boris M. Kashtan

2008 ◽  
Vol 5 (1) ◽  
pp. 18-23
Author(s):  
Qiankun Liu ◽  
Liguo Han ◽  
Enli Wang ◽  
Gangyi Shan

Sign in / Sign up

Export Citation Format

Share Document